TensorFlow implementation for the paper Learning Controllable Fair Representations, AISTATS 2019.
Requirements:
- Tensorflow
- pandas
- numpy
- tf_utils
git clone [email protected]:jiamings/tf_utils.git
cd tf_utils
pip install -e .
python -m exmaples.adult
python -m examples.adult --lag
If MIFR then the e hyperparameter values corresponds to individual lambda
parameters, if L-MIFR then they correspond to epsilon
contraints in the paper.
e1
: Upper bound for MIe2
: Adversarial approximation to Demographic paritye4
: Adversarial approximation to Equalized oddse5
: Adversarial approximation to Equalized opportunitydisc
: discriminator iterations
If you find the idea or code useful for your research, please consider citing our paper:
@article{song2019learning,
title={Learning Controllable Fair Representations},
author={Song, Jiaming and and Grover, Aditya and Zhao, Shengjia and Ermon, Stefano},
journal={arXiv preprint arXiv:1812.04218},
year={2018}
}
utils/logger.py
is based on an implementation in OpenAI Baselines.
tsong [at] cs [dot] stanford [dot] edu