Skip to content

karthik111/video_anomaly_detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

video_anomaly_detection

07-May-2023

  • Added r3d_18_inference.py to perform inference using Inception 3D model on provided video file
  • Added load_video_from_dataset.py to obtain a randomly provided video from Data_Loader.py

To do:

  • Extract feature from interim layer
  • Read up the Inception architecture

08-May-2023

  • Coded the feature extractor layer

To do:

  • Build a simple classification model based on the feature extractor of a few video clips.
  • Obtain anomaly detection accuracy.
  • Build a UMAP dimensionality reducer for different anomaly types
  • Compare current feature extractor to embeddings from a vision transformer

20-May-2023

  • Built a CIFAR 10 classifier with custom images to be used for to process the interim layer of video feature extractor

24-Jun

  • Video resnet model uses 3D convolutions with variable length output in the penultimate layer
  • This doesn't allow the penultimate Layer 4 to be used for downstream learning tasks that need a fixed length feature input
  • used the torch summary library to review output model sizes based on given video input - very useful
  • Reverted to last layer of global average pool layer which returns (512) size output
  • Questions
    • Will attention be needed given that temporal features are detected in the Video res net model (R3D)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published