-
Alibaba
- Beijing,China
Stars
Ongoing research training transformer models at scale
A high-throughput and memory-efficient inference and serving engine for LLMs
Seamless operability between C++11 and Python
Fluid, elastic data abstraction and acceleration for BigData/AI applications in cloud. (Project under CNCF)
Peer to peer distribution of container content in Kubernetes clusters.
An extension package of 'overlaybd-snapshotter'. It constructs the overlaybd image in OCIv1 tgz format through a tricky method which makes 'overlaybd-snapshotter' adapter for a normal OCIv…
Fay is an open-source digital human framework integrating language models and digital characters. It offers retail, assistant, and agent versions for diverse applications like virtual shopping guid…
MiniCPM3-4B: An edge-side LLM that surpasses GPT-3.5-Turbo.
Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.
A one-stop data processing system to make data higher-quality, juicier, and more digestible for (multimodal) LLMs! 🍎 🍋 🌽 ➡️ ➡️🍸 🍹 🍷为大模型提供更高质量、更丰富、更易”消化“的数据!
Unofficial Implementation of Animate Anyone
FinQwen: 致力于构建一个开放、稳定、高质量的金融大模型项目,基于大模型搭建金融场景智能问答系统,利用开源开放来促进「AI+金融」。
MNBVC(Massive Never-ending BT Vast Chinese corpus)超大规模中文语料集。对标chatGPT训练的40T数据。MNBVC数据集不但包括主流文化,也包括各个小众文化甚至火星文的数据。MNBVC数据集包括新闻、作文、小说、书籍、杂志、论文、台词、帖子、wiki、古诗、歌词、商品介绍、笑话、糗事、聊天记录等一切形式的纯文本中文数据。
整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主,包括底座模型,垂直领域微调及应用,数据集与教程等。
A generalized information-seeking agent system with Large Language Models (LLMs).
AI Native Data App Development framework with AWEL(Agentic Workflow Expression Language) and Agents
Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person
High-speed Large Language Model Serving on PCs with Consumer-grade GPUs
Master the command line, in one page
The Amazon S3 Connector for PyTorch delivers high throughput for PyTorch training jobs that access and store data in Amazon S3.
ChatGLM-6B: An Open Bilingual Dialogue Language Model | 开源双语对话语言模型
🦜🔗 Build context-aware reasoning applications
Tensors and Dynamic neural networks in Python with strong GPU acceleration
Unified Efficient Fine-Tuning of 100+ LLMs (ACL 2024)