Skip to content

Everything about Transfer Learning and Domain Adaptation--迁移学习

License

Notifications You must be signed in to change notification settings

puchapu/transferlearning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contributors Forks Stargazers Issues


Transfer Leanring

Everything about Transfer Learning. 迁移学习.

PapersTutorialsResearch areasTheorySurveyCodeDataset & benchmark

ThesisScholarsContestsJournal/conferenceApplicationsOthersContributing

Widely used by top conferences and journals:

@Misc{transferlearning.xyz,
howpublished = {\url{http://transferlearning.xyz}},   
title = {Everything about Transfer Learning and Domain Adapation},  
author = {Wang, Jindong and others}  
}  

Awesome MIT License LICENSE 996.icu

Related Codes:


NOTE: You can directly open the code in Gihub Codespaces on the web to run them without downloading! Also, try github.dev.

0.Papers (论文)

Awesome transfer learning papers (迁移学习文章汇总)

  • Paperweekly: A website to recommend and read paper notes

Latest papers:

Updated at 2023-02-02:

  • Robust Representation Learning with Self-Distillation for Domain Generalization [arxiv]

    • Robust representation learning with self-distillation
  • ICLR-23 Temporal Coherent Test-Time Optimization for Robust Video Classification [arxiv]

    • Temporal distribution shift in video classification
  • WSDM-23 A tutorial on domain generalization [link] | [website]

    • A tutorial on domain generalization

Updated at 2023-02-23:

  • On the Robustness of ChatGPT: An Adversarial and Out-of-distribution Perspective [arxiv] | [code]
    • Adversarial and OOD evaluation of ChatGPT 对ChatGPT鲁棒性的评测

Updated at 2023-02-08:

  • Transfer learning for process design with reinforcement learning [arxiv]

    • Transfer learning for process design with reinforcement learning 使用强化迁移学习进行过程设计
  • Domain Adaptation for Time Series Under Feature and Label Shifts [arxiv]

    • Domain adaptation for time series 用于时间序列的domain adaptation
  • How Reliable is Your Regression Model's Uncertainty Under Real-World Distribution Shifts? [arxiv]

    • Regression models uncertainty for distribution shift 回归模型对于分布漂移的不确定性

Updated at 2023-02-02:

  • ICLR'23 SoftMatch: Addressing the Quantity-Quality Tradeoff in Semi-supervised Learning [arxiv]

    • Semi-supervised learning algorithm 解决标签质量问题的半监督学习方法
  • Empirical Study on Optimizer Selection for Out-of-Distribution Generalization [arxiv]

    • Opimizer selection for OOD generalization OOD泛化中的学习器选择
  • ICML'22 Understanding the failure modes of out-of-distribution generalization [arxiv]

    • Understand the failure modes of OOD generalization 探索OOD泛化中的失败现象
  • ICLR'23 Out-of-distribution Representation Learning for Time Series Classification [arxiv]

    • OOD for time series classification 时间序列分类的OOD算法

1.Introduction and Tutorials (简介与教程)

Want to quickly learn transfer learning?想尽快入门迁移学习?看下面的教程。


2.Transfer Learning Areas and Papers (研究领域与相关论文)


3.Theory and Survey (理论与综述)

Here are some articles on transfer learning theory and survey.

Survey (综述文章):

Theory (理论文章):


4.Code (代码)

Unified codebases for:

More: see HERE and HERE for an instant run using Google's Colab.


5.Transfer Learning Scholars (著名学者)

Here are some transfer learning scholars and labs.

全部列表以及代表工作性见这里

Please note that this list is far not complete. A full list can be seen in here. Transfer learning is an active field. If you are aware of some scholars, please add them here.


6.Transfer Learning Thesis (硕博士论文)

Here are some popular thesis on transfer learning.

这里, 提取码:txyz。


7.Datasets and Benchmarks (数据集与评测结果)

Please see HERE for the popular transfer learning datasets and benchmark results.

这里整理了常用的公开数据集和一些已发表的文章在这些数据集上的实验结果。


8.Transfer Learning Challenges (迁移学习比赛)


Journals and Conferences

See here for a full list of related journals and conferences.


Applications (迁移学习应用)

See HERE for transfer learning applications.

迁移学习应用请见这里


Other Resources (其他资源)


Contributing (欢迎参与贡献)

If you are interested in contributing, please refer to HERE for instructions in contribution.


Copyright notice

[Notes]This Github repo can be used by following the corresponding licenses. I want to emphasis that it may contain some PDFs or thesis, which were downloaded by me and can only be used for academic purposes. The copyrights of these materials are owned by corresponding publishers or organizations. All this are for better adademic research. If any of the authors or publishers have concerns, please contact me to delete or replace them.

About

Everything about Transfer Learning and Domain Adaptation--迁移学习

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.1%
  • MATLAB 4.2%
  • Jupyter Notebook 3.6%
  • Shell 3.2%
  • Makefile 1.4%
  • Cuda 1.0%
  • Other 0.5%