Go configuration with fangs
Viper is a complete configuration solution for go applications. It is designed to work within an application, and can handle all types of configuration needs and formats. It supports:
- setting defaults
- reading from JSON, TOML, and YAML config files
- reading from environment variables
- reading from remote config systems (Etcd or Consul), and watching changes
- reading from command line flags
- reading from buffer
- setting explicit values
Viper can be thought of as a registry for all of your applications configuration needs.
When building a modern application, you don’t want to worry about configuration file formats; you want to focus on building awesome software. Viper is here to help with that.
Viper does the following for you:
- Find, load, and unmarshal a configuration file in JSON, TOML, or YAML.
- Provide a mechanism to set default values for your different configuration options.
- Provide a mechanism to set override values for options specified through command line flags.
- Provide an alias system to easily rename parameters without breaking existing code.
- Make it easy to tell the difference between when a user has provided a command line or config file which is the same as the default.
Viper uses the following precedence order. Each item takes precedence over the item below it:
- explicit call to Set
- flag
- env
- config
- key/value store
- default
Viper configuration keys are case insensitive.
A good configuration system will support default values. A default value is not required for a key, but it's useful in the event that a key hasn’t be set via config file, environment variable, remote configuration or flag.
Examples:
viper.SetDefault("ContentDir", "content")
viper.SetDefault("LayoutDir", "layouts")
viper.SetDefault("Taxonomies", map[string]string{"tag": "tags", "category": "categories"})
Viper requires minimal configuration so it knows where to look for config files. Viper supports JSON, TOML and YAML files. Viper can search multiple paths, but currently a single Viper instance only supports a single configuration file.
viper.SetConfigName("config") // name of config file (without extension)
viper.AddConfigPath("/etc/appname/") // path to look for the config file in
viper.AddConfigPath("$HOME/.appname") // call multiple times to add many search paths
err := viper.ReadInConfig() // Find and read the config file
if err != nil { // Handle errors reading the config file
panic(fmt.Errorf("Fatal error config file: %s \n", err))
}
Viper predefines many configuration sources such as files, environment variables, flags, and remote K/V store, but you are not bound to them. You can also implement your own required configuration source and feed it to viper.
viper.SetConfigType("yaml") // or viper.SetConfigType("YAML")
// any approach to require this configuration into your program.
var yamlExample = []byte(`
Hacker: true
name: steve
hobbies:
- skateboarding
- snowboarding
- go
clothing:
jacket: leather
trousers: denim
age: 35
eyes : brown
beard: true
`)
viper.ReadConfig(bytes.NewBuffer(yamlExample))
viper.Get("name") // this would be "steve"
These could be from a command line flag, or from your own application logic.
viper.Set("Verbose", true)
viper.Set("LogFile", LogFile)
Aliases permit a single value to be referenced by multiple keys
viper.RegisterAlias("loud", "Verbose")
viper.Set("verbose", true) // same result as next line
viper.Set("loud", true) // same result as prior line
viper.GetBool("loud") // true
viper.GetBool("verbose") // true
Viper has full support for environment variables. This enables 12 factor applications out of the box. There are four methods that exist to aid working with ENV:
AutomaticEnv()
BindEnv(string...) : error
SetEnvPrefix(string)
SetEnvReplacer(string...) *strings.Replacer
When working with ENV variables, it’s important to recognize that Viper treats ENV variables as case sensitive.
Viper provides a mechanism to try to ensure that ENV variables are unique. By
using SetEnvPrefix
, you can tell Viper to use add a prefix while reading from
the environment variables. Both BindEnv
and AutomaticEnv
will use this
prefix.
BindEnv
takes one or two parameters. The first parameter is the key name, the
second is the name of the environment variable. The name of the environment
variable is case sensitive. If the ENV variable name is not provided, then
Viper will automatically assume that the key name matches the ENV variable name,
but the ENV variable is IN ALL CAPS. When you explicitly provide the ENV
variable name, it does not automatically add the prefix.
One important thing to recognize when working with ENV variables is that the
value will be read each time it is accessed. Viper does not fix the value when
the BindEnv
is called.
AutomaticEnv
is a powerful helper especially when combined with
SetEnvPrefix
. When called, Viper will check for an environment variable any
time a viper.Get
request is made. It will apply the following rules. It will
check for a environment variable with a name matching the key uppercased and
prefixed with the EnvPrefix
if set.
SetEnvReplacer
allows you to use a strings.Replacer
object to rewrite Env
keys to an extent. This is useful if you want to use -
or something in your
Get()
calls, but want your environmental variables to use _
delimiters. An
example of using it can be found in viper_test.go
.
SetEnvPrefix("spf") // will be uppercased automatically
BindEnv("id")
os.Setenv("SPF_ID", "13") // typically done outside of the app
id := Get("id") // 13
Viper has the ability to bind to flags. Specifically, Viper supports Pflags
as used in the Cobra library.
Like BindEnv
, the value is not set when the binding method is called, but when
it is accessed. This means you can bind as early as you want, even in an
init()
function.
The BindPFlag()
method provides this functionality.
Example:
serverCmd.Flags().Int("port", 1138, "Port to run Application server on")
viper.BindPFlag("port", serverCmd.Flags().Lookup("port"))
To enable remote support in Viper, do a blank import of the viper/remote
package:
import _ github.com/spf13/viper/remote
Viper will read a config string (as JSON, TOML, or YAML) retrieved from a path in a Key/Value store such as Etcd or Consul. These values take precedence over default values, but are overridden by configuration values retrieved from disk, flags, or environment variables.
Viper uses crypt to retrieve configuration from the K/V store, which means that you can store your configuration values encrypted and have them automatically decrypted if you have the correct gpg keyring. Encryption is optional.
You can use remote configuration in conjunction with local configuration, or independently of it.
crypt
has a command-line helper that you can use to put configurations in your
K/V store. crypt
defaults to etcd on http://127.0.0.1:4001.
$ go get github.com/xordataexchange/crypt/bin/crypt
$ crypt set -plaintext /config/hugo.json /Users/hugo/settings/config.json
Confirm that your value was set:
$ crypt get -plaintext /config/hugo.json
See the crypt
documentation for examples of how to set encrypted values, or
how to use Consul.
viper.AddRemoteProvider("etcd", "http://127.0.0.1:4001","/config/hugo.json")
viper.SetConfigType("json") // because there is no file extension in a stream of bytes
err := viper.ReadRemoteConfig()
viper.AddSecureRemoteProvider("etcd","http://127.0.0.1:4001","/config/hugo.json","/etc/secrets/mykeyring.gpg")
viper.SetConfigType("json") // because there is no file extension in a stream of bytes
err := viper.ReadRemoteConfig()
// alternatively, you can create a new viper instance.
var runtime_viper = viper.New()
runtime_viper.AddRemoteProvider("etcd", "http://127.0.0.1:4001", "/config/hugo.yml")
runtime_viper.SetConfigType("yaml") // because there is no file extension in a stream of bytes
// read from remote config the first time.
err := runtime_viper.ReadRemoteConfig()
// unmarshal config
runtime_viper.Unmarshal(&runtime_conf)
// open a goroutine to wath remote changes forever
go func(){
for {
time.Sleep(time.Second * 5) // delay after each request
// currenlty, only tested with etcd support
err := runtime_viper.WatchRemoteConfig()
if err != nil {
log.Errorf("unable to read remote config: %v", err)
continue
}
// unmarshal new config into our runtime config struct. you can also use channel
// to implement a signal to notify the system of the changes
runtime_viper.Unmarshal(&runtime_conf)
}
}()
In Viper, there are a few ways to get a value depending on the value's type. The following functions and methods exist:
Get(key string) : interface{}
GetBool(key string) : bool
GetFloat64(key string) : float64
GetInt(key string) : int
GetString(key string) : string
GetStringMap(key string) : map[string]interface{}
GetStringMapString(key string) : map[string]string
GetStringSlice(key string) : []string
GetTime(key string) : time.Time
GetDuration(key string) : time.Duration
IsSet(key string) : bool
One important thing to recognize is that each Get function will return a zero
value if it’s not found. To check if a given key exists, the IsSet()
method
has been provided.
Example:
viper.GetString("logfile") // case-insensitive Setting & Getting
if viper.GetBool("verbose") {
fmt.Println("verbose enabled")
}
The accessor methods also accept formatted paths to deeply nested keys. For example, if the following JSON file is loaded:
{
"host": {
"address": "localhost",
"port": 5799
},
"datastore": {
"metric": {
"host": "127.0.0.1",
"port": 3099
},
"warehouse": {
"host": "198.0.0.1",
"port": 2112
}
}
}
Viper can access a nested field by passing a .
delimited path of keys:
GetString("datastore.metric.host") // (returns "127.0.0.1")
This obeys the precedence rules established above; the search for the root key
(in this example, datastore
) will cascade through the remaining configuration
registries until found. The search for the sub-keys (metric
and host
),
however, will not.
For example, if the metric
key was not defined in the configuration loaded
from file, but was defined in the defaults, Viper would return the zero value.
On the other hand, if the primary key was not defined, Viper would go through the remaining registries looking for it.
Lastly, if there exists a key that matches the delimited key path, its value will be returned instead. E.g.
{
"datastore.metric.host": "0.0.0.0",
"host": {
"address": "localhost",
"port": 5799
},
"datastore": {
"metric": {
"host": "127.0.0.1",
"port": 3099
},
"warehouse": {
"host": "198.0.0.1",
"port": 2112
}
}
}
GetString("datastore.metric.host") //returns "0.0.0.0"
You also have the option of Unmarshaling all or a specific value to a struct, map, etc.
There are two methods to do this:
Unmarshal(rawVal interface{}) : error
UnmarshalKey(key string, rawVal interface{}) : error
Example:
type config struct {
Port int
Name string
}
var C config
err := Unmarshal(&C)
if err != nil {
t.Fatalf("unable to decode into struct, %v", err)
}
Viper comes ready to use out of the box. There is no configuration or initialization needed to begin using Viper. Since most applications will want to use a single central repository for their configuration, the viper package provides this. It is similar to a singleton.
In all of the examples above, they demonstrate using viper in it's singleton style approach.
You can also create many different vipers for use in your application. Each will have it’s own unique set of configurations and values. Each can read from a different config file, key value store, etc. All of the functions that viper package supports are mirrored as methods on a viper.
Example:
x := viper.New()
y := viper.New()
x.SetDefault("ContentDir", "content")
y.SetDefault("ContentDir", "foobar")
//...
When working with multiple vipers, it is up to the user to keep track of the different vipers.
Q: Why not INI files?
A: Ini files are pretty awful. There’s no standard format, and they are hard to validate. Viper is designed to work with JSON, TOML or YAML files. If someone really wants to add this feature, I’d be happy to merge it. It’s easy to specify which formats your application will permit.
Q: Why is it called “Viper”?
A: Viper is designed to be a companion to Cobra. While both can operate completely independently, together they make a powerful pair to handle much of your application foundation needs.
Q: Why is it called “Cobra”?
A: Is there a better name for a commander?