Project: Multi-stage Compression of Deep Neural Networks through Pruning, Knowledge Distillation, and Quantization
Lead Professor: Dr. Pooyan Jamshidi
Project lead: Blake Edwards
Contributers: Blake Edwards, Shahriar Iqbal, Stephen Baione
- Overview
- Dependencies
- Pruning
- Knowledge Distillation
- Project Organization
- Getting Started
- How to Contribute
- References
Exploration and analysis of deep neural network knowledge distillation techniques: teacher assisted knowledge distillation, mulitstage knowledge distillation, and early stopping knowledge distillation.
Minimum memory requirement: 3GB of RAM
overview of implemented knowledge distillation (KD) methods
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
└── tox.ini <- tox file with settings for running tox; see tox.testrun.org
References
-
Asif, U., Tang, J., & Harrer, S. (2019). Ensemble knowledge distillation for learning improved and efficient networks. ArXiv:1909.08097 [Cs]. Retrieved from http://arxiv.org/abs/1909.08097
-
Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A Survey of Model Compression and Acceleration for Deep Neural Networks. ArXiv, abs/1710.09282.
-
Cole, Casey & Janos, Bethany & Anshari, Dien & Thrasher, James & Strayer, Scott & Valafar, Homayoun. (2016). Recognition of Smoking Gesture Using Smart Watch Technology.
-
Han, S., Mao, H., & Dally, W.J. (2015). Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding. CoRR, abs/1510.00149.
-
He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018). Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks. IJCAI.
-
Hinton, G., Vinyals, O. & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.
-
Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. & Keutzer, K. (2017). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size (cite arxiv:1602.07360Comment: In ICLR Format)
-
Iqbal, M. S., Kotthoff, L., & Jamshidi, P. (2019). Transfer learning for performance modeling of deep neural network systems. ArXiv:1904.02838 [Cs]. Retrieved from http://arxiv.org/abs/1904.02838
-
Lecun, Y., Denker, J. S., Solla, S. A., Howard, R. E., & Jackel, L. D. (1990). Optimal brain damage. In D. Touretzky (Ed.), Advances in Neural Information Processing Systems (NIPS 1989), Denver, CO (Vol. 2). Morgan Kaufmann.
-
Mirzadeh, S., Farajtabar, M., Li, A., & Ghasemzadeh, H. (2019). Improved Knowledge Distillation via Teacher Assistant: Bridging the Gap Between Student and Teacher. ArXiv, abs/1902.03393.
-
Jin, S., Di, S., Liang, X., Tian, J., Tao, D., & Cappello, F. (2019). Deepsz: A novel framework to compress deep neural networks by using error-bounded lossy compression. Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing - HPDC ’19, 159–170. https://doi.org/10.1145/3307681.3326608
-
Singh, P., Verma, V. K., Rai, P., & Namboodiri, V. P. (2019). Play and prune: Adaptive filter pruning for deep model compression. ArXiv:1905.04446 [Cs]. Retrieved from http://arxiv.org/abs/1905.04446
-
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., & Fergus, R. (2013). Intriguing properties of neural networks. CoRR, abs/1312.6199.
-
You, Z., Yan, K., Ye, J., Ma, M., & Wang, P. (2019). Gate decorator: Global filter pruning method for accelerating deep convolutional neural networks. ArXiv:1909.08174 [Cs, Eess]. Retrieved from http://arxiv.org/abs/1909.08174