Skip to content

Multi-agent reinforcement learning algorithms: MADDPG-SFs & MADDPG-SFKT

Notifications You must be signed in to change notification settings

wenzhangliu/maddpg-sfkt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 

Repository files navigation

Efficient Exploration for Multi-agent Reinforcement Learning via Transferable Successor Features

Multi-agent reinforcement learning algorithms: MADDPG-SFs & MADDPG-SFKT

This is an open-source code for our research work titled "Efficient Exploration for Multi-agent Reinforcement Learning via Transferable Successor Features".

Requirements:

  • Python 3.6

Dependencies

  • Tensorflow 1.15 + Gym

Usage

Experiment 1: Cooperaitve box-pushing environment (source domain)

As introduced in the paper, some source models with basic tasks should be pre-trained in source domain.

  • Train:

$ python main_sfs.py --iftrain 1 --scenario "simple_push_box_multi" --method MADDPG-SFs --id-task 0

  • Test:

$ python main_sfs.py --iftrain 0 --scenario "simple_push_box_multi" --id-task 0"

is-task: -1, 0, 1, 2

Experiment 1: Cooperaitve box-pushing environment (target domain)

  • Train: Knowledge transfer and fine tune.

    "python main_transfer.py --iftrain 0 --istransfer 1 --scenario "simple_push_box_multi" --penalty -1.0"

    "python main_transfer.py --iftrain 1 --istransfer 0 --scenario "simple_push_box_multi" --penalty -1.0"

  • Test:

    "python main_transfer.py --iftrain 0 --istransfer 0 --scenario "simple_push_box_multi""

Experiment 2: Non-monotonic predator-prey environment (source domain)

As introduced in the paper, some source models with basic tasks should be pre-trained in source domain.

  • Train:

    "python main_sfs.py --iftrain 1 --scenario "predator_prey" --method MADDPG-SFs --penalty1 -0.0 --penalty2 -0.0 --prey-policy random"

  • Test:

    "python main_sfs.py --iftrain 1 --scenario "predator_prey" --method MADDPG-SFs --penalty1 -0.0 --penalty2 -0.0 --prey-policy random"

Experiment 2: Non-monotonic predator-prey environment (target domain)

  • Train: Knowledge transfer and fine tune.

    "python main_transfer.py --iftrain 0 --iftransfer 1 --scenario "predator_prey" --method MADDPG-SFKT --penalty1 -1.0 --penalty2 -1.0 --prey-policy random"

    "python main_transfer.py --iftrain 1 iftransfer 0 -scenario "predator_prey" --method MADDPG-SFKT --penalty1 -1.0 --penalty2 -1.0 --prey-policy random"

  • Test:

    "python main_transfer.py --iftrain 0 iftransfer 0 -scenario "predator_prey" --method MADDPG-SFKT --prey-policy random"

Paper citation:

@article{liu2022efficient,
  title={Efficient exploration for multi-agent reinforcement learning via transferable successor features},
  author={Liu, Wenzhang and Dong, Lu and Niu, Dan and Sun, Changyin},
  journal={IEEE/CAA Journal of Automatica Sinica},
  volume={9},
  number={9},
  pages={1673--1686},
  year={2022},
  publisher={IEEE}
}

About

Multi-agent reinforcement learning algorithms: MADDPG-SFs & MADDPG-SFKT

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages