Hőerőgép
Termodinamikai körfolyamatok |
---|
A hőerőgép olyan valóságos vagy elméleti erőgép, amely hőenergiát mechanikai munkává alakít át. Más definíció szerint a hőerőgép olyan kalorikus gép, mely hasznos mechanikai munkát szolgáltat. A kalorikus gépek a hőerőgépek és a hőszivattyúk és termodinamikai elven működő hűtőgépek összefoglaló neve. A hőerőgépek termodinamikai körfolyamatot (ciklust) valósítanak meg működésük folyamán. A hőerőgépeket rendszerint az általuk megvalósított körfolyamatról nevezik el, de gyakran alternatív elnevezéseket is használnak: benzinmotor, gőzgép, gázturbina. A belsőégésű gépek (motorok) a gép belsejében fejlesztenek hőenergiát, a külső hőbevezetésű gépek külső hőforrás által fejlesztett hőenergiát abszorbeálják. Egyes hőerőgépek a külső atmoszféra felé nyitott szerkezetűek, mások el vannak szigetelve a környezettől (nyitott vagy zárt rendszerek).
A hőerőgép a magas hőmérsékletű hőforrásból hőt vesz fel, egy részét átalakítja hasznos mechanikai munkává, a maradékot pedig leadja az alacsony hőmérsékletű hőnyelő rendszerbe.
Hatásfok
[szerkesztés]A termodinamika első főtételéből írható:
ahol
- a hőerőgép által termelt hasznos munka (ez negatív, mivel a munkát a gép végzi)
- a bevezetett hő a nagyhőmérsékletű rendszerből (ez negatív, mivel a hőt a nagyhőmérsékletű tartályból vonja el, így pozitív.
- ez a hőmennyiség, mely a hűtőn keresztül távozik az alacsony hőfokú rendszerbe (Ez pozitív, mivel a hőt átadja a hűtőnek)
Az energiaátalakító berendezés (legyen az hűtőgép, hőszivattyú, vagy erőgép) hatásfoka általánosságban a hasznos munka és a befektetett energia viszonya.
Erőgép esetében hasznos munkát akarunk nyerni hőátszármaztatás útján:
Egy hőerőgép elméletileg lehetséges legjobb hatásfoka csak a hőforrás és a hőnyelő hőmérsékletétől függ, melyek mellett a gép működik. Ezt a hatásfokot egy ideális képzeletbeli hőerőgép esetére szokás levezetni, mint amilyen a Carnot-féle hőerőgép, bár más hőerőgépek, melyek más körfolyamatot valósítanak meg, szintén elérhetik a legjobb hatásfokot. Matematikailag ez ezért lehetséges, mert reverzibilis állapotváltozások esetén a hideg tartály entrópiaváltozása egyenlő a meleg tartály ellenkező előjelű entrópiaváltozásával (vagyis ), így az összentrópia nem változik a körfolyamat során:
ahol a hőforrás, pedig a hőnyelő abszolút hőmérséklete kelvinben mérve. Megjegyzendő, hogy pozitív, negatív minden reverzibilis munkavégző körfolyamatnál, az entrópia összességében nem változik, hanem a nagy entrópiájú rendszerből a kis entrópiájú rendszer felé áramlik csökkentve a hőforrás entrópiáját és növelve a hőnyelőét.
Fajtái
[szerkesztés]- Külső hőbevezetésű gépek
- Belső égésű hőerőgépek (belső égésű motor)
- Gázturbina
- Sugárhajtómű
Források
[szerkesztés]- Pattantyús. Gépész- és Villamosmérnökök Kézikönyve 2. kötet. Műszaki Könyvkiadó, Budapest, 1961.
- Pattantyús Á. Géza: A gépek üzemtana. Műszaki Könyvkiadó, Budapest, 1983. ISBN 963-10-4808-X
- Prof. Dr. Szabó Gábor - Péter Szabó István: Alkalmazott hőtan. Szeged, 2003. A Szegedi Tudományegyetem Szegedi Élelmiszeripari Főiskolai Kar jegyzete
További információk
[szerkesztés]- Kovács Endre, Paripás Béla: Fizika I.
- Dr. Firtha Ferenc: Fizika II.[halott link]
- "Szomjas kacsa": párolgással működő hőerőgép
- Hőerőgép (angol)