Eccentricità (matematica)
L'eccentricità in matematica è un parametro numerico non negativo che caratterizza le sezioni coniche a meno di similitudine: ellissi per (in particolare circonferenze per ), parabole per iperboli per L'eccentricità può essere interpretata come una misura di quanto una sezione conica è lontana dall'essere una circonferenza.
L'eccentricità può essere definita come un parametro che interviene nella costruzione di una conica, oppure in funzione degli angoli del cono e del piano che lo seziona, rispetto all'asse di rotazione del cono. Siccome il "tipo" di conica (la sua classe di similitudine) e le sue caratteristiche sono definiti in funzione dell'eccentricità, questa può essere ricavata indirettamente dalle formule.
Definizione
[modifica | modifica wikitesto]Costruzione geometrica
[modifica | modifica wikitesto]Fissati nel piano una retta (direttrice) e un punto (fuoco) esterno a , una conica di eccentricità è il luogo dei punti che hanno distanza dal fuoco pari a volte la loro distanza dalla direttrice:
Sezione conica
[modifica | modifica wikitesto]Fissati nello spazio un cono circolare retto di apertura (l'angolo tra l'asse di rotazione e la retta generatrice del cono) e un piano non passante per il vertice, che forma un angolo con l'asse di rotazione del cono; l'eccentricità della sezione conica è definita come:
Classificazione
[modifica | modifica wikitesto]Ellisse
[modifica | modifica wikitesto]Per , ovvero , si ha un'ellisse, che ha come uno dei due fuochi.
Scrivendo l'equazione dell'ellisse in forma canonica
l'eccentricità , l'asse maggiore , l'asse minore e la distanza interfocale sono legati tra loro dalle formule
Invertendo le formule si può esprimere l'eccentricità come
L'eccentricità fornisce dunque una misura di quanto l'ellisse sia "schiacciata", anche se in maniera meno diretta del rapporto tra i semiassi. In particolare per , ovvero , l'ellisse diventa una circonferenza (solo come sezione conica: con la costruzione geometrica si ottiene il solo punto ).
Parabola
[modifica | modifica wikitesto]Per , ovvero si ottiene una parabola avente fuoco e direttrice : è il luogo dei punti equidistanti da e da .
Iperbole
[modifica | modifica wikitesto]Per , ovvero , si ha un'iperbole, uno dei cui due fuochi è .
Scrivendo l'equazione dell'iperbole in forma canonica
con asintoti
l'eccentricità , la distanza tra i vertici , i coefficienti angolari degli asintoti e la distanza interfocale sono legati tra loro dalle formule
Invertendo le formule si può esprimere l'eccentricità come
L'eccentricità fornisce dunque una misura di quanto l'iperbole sia "schiacciata", anche se in maniera meno diretta dei coefficienti angolari degli asintoti.
In particolare per , ossia quando l'iperbole è equilatera (cioè ), questo è possibile solo se
ossia solo se , geometricamente questo avviene solo quando l'angolo formato dalla sezione assiale del cono supera un angolo retto.
Voci correlate
[modifica | modifica wikitesto]- Classe di equivalenza
- Cono circolare retto
- Ellisse
- Iperbole (geometria)
- Parabola (geometria)
- Sezione conica
- Similitudine (geometria)
Altri progetti
[modifica | modifica wikitesto]- Wikizionario contiene il lemma di dizionario «eccentricità»
- Wikimedia Commons contiene immagini o altri file sull'eccentricità
Collegamenti esterni
[modifica | modifica wikitesto]- (EN) eccentricity, su Enciclopedia Britannica, Encyclopædia Britannica, Inc.
- (EN) Eric W. Weisstein, Eccentricità, su MathWorld, Wolfram Research.
Controllo di autorità | GND (DE) 4340863-1 |
---|