パースの法則(パースのほうそく)は哲学者であり論理学者であるチャールズ・サンダース・パースにちなむ論理学における法則である。彼の最初の命題論理の公理化において、この法則を公理に採用した。この公理は、含意と呼ばれるただひとつの結合子を持つ体系における排中律であると考えることもできる。 命題計算では、パースの法則は ((P→Q)→P)→P のことを言う。この意味するところを書き出すと、命題Pについて、命題Qが存在して、「PならばQ」からPが真であることが従うときには、Pは真でなければならないとなる。とりわけ、Qとして偽を選んだ場合には、Pから偽が従うときは常にPが真であるならば、Pは真であるとなる。 パースの法則は直観論理やでは成立せず、演繹定理だけからでは導くことができない。 カリー=ハワード同型対応の下では、パースの法則は継続演算子(例えばSchemeにおける)の型である。

Property Value
dbo:abstract
  • パースの法則(パースのほうそく)は哲学者であり論理学者であるチャールズ・サンダース・パースにちなむ論理学における法則である。彼の最初の命題論理の公理化において、この法則を公理に採用した。この公理は、含意と呼ばれるただひとつの結合子を持つ体系における排中律であると考えることもできる。 命題計算では、パースの法則は ((P→Q)→P)→P のことを言う。この意味するところを書き出すと、命題Pについて、命題Qが存在して、「PならばQ」からPが真であることが従うときには、Pは真でなければならないとなる。とりわけ、Qとして偽を選んだ場合には、Pから偽が従うときは常にPが真であるならば、Pは真であるとなる。 パースの法則は直観論理やでは成立せず、演繹定理だけからでは導くことができない。 カリー=ハワード同型対応の下では、パースの法則は継続演算子(例えばSchemeにおける)の型である。 (ja)
  • パースの法則(パースのほうそく)は哲学者であり論理学者であるチャールズ・サンダース・パースにちなむ論理学における法則である。彼の最初の命題論理の公理化において、この法則を公理に採用した。この公理は、含意と呼ばれるただひとつの結合子を持つ体系における排中律であると考えることもできる。 命題計算では、パースの法則は ((P→Q)→P)→P のことを言う。この意味するところを書き出すと、命題Pについて、命題Qが存在して、「PならばQ」からPが真であることが従うときには、Pは真でなければならないとなる。とりわけ、Qとして偽を選んだ場合には、Pから偽が従うときは常にPが真であるならば、Pは真であるとなる。 パースの法則は直観論理やでは成立せず、演繹定理だけからでは導くことができない。 カリー=ハワード同型対応の下では、パースの法則は継続演算子(例えばSchemeにおける)の型である。 (ja)
dbo:wikiPageID
  • 3125817 (xsd:integer)
dbo:wikiPageLength
  • 4789 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 74502860 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • パースの法則(パースのほうそく)は哲学者であり論理学者であるチャールズ・サンダース・パースにちなむ論理学における法則である。彼の最初の命題論理の公理化において、この法則を公理に採用した。この公理は、含意と呼ばれるただひとつの結合子を持つ体系における排中律であると考えることもできる。 命題計算では、パースの法則は ((P→Q)→P)→P のことを言う。この意味するところを書き出すと、命題Pについて、命題Qが存在して、「PならばQ」からPが真であることが従うときには、Pは真でなければならないとなる。とりわけ、Qとして偽を選んだ場合には、Pから偽が従うときは常にPが真であるならば、Pは真であるとなる。 パースの法則は直観論理やでは成立せず、演繹定理だけからでは導くことができない。 カリー=ハワード同型対応の下では、パースの法則は継続演算子(例えばSchemeにおける)の型である。 (ja)
  • パースの法則(パースのほうそく)は哲学者であり論理学者であるチャールズ・サンダース・パースにちなむ論理学における法則である。彼の最初の命題論理の公理化において、この法則を公理に採用した。この公理は、含意と呼ばれるただひとつの結合子を持つ体系における排中律であると考えることもできる。 命題計算では、パースの法則は ((P→Q)→P)→P のことを言う。この意味するところを書き出すと、命題Pについて、命題Qが存在して、「PならばQ」からPが真であることが従うときには、Pは真でなければならないとなる。とりわけ、Qとして偽を選んだ場合には、Pから偽が従うときは常にPが真であるならば、Pは真であるとなる。 パースの法則は直観論理やでは成立せず、演繹定理だけからでは導くことができない。 カリー=ハワード同型対応の下では、パースの法則は継続演算子(例えばSchemeにおける)の型である。 (ja)
rdfs:label
  • パースの法則 (ja)
  • パースの法則 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of