数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する: * 体、環、あるいはその演算の 1 つとして乗法をもつ他の構造の、可逆元が乗法の下でなす群。体 F の場合には、群は {F ∖ {0}, •} である、ただし 0 は F の零元であり二項演算 • は体の乗法である。 * GL(1).

Property Value
dbo:abstract
  • 数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する: * 体、環、あるいはその演算の 1 つとして乗法をもつ他の構造の、可逆元が乗法の下でなす群。体 F の場合には、群は {F ∖ {0}, •} である、ただし 0 は F の零元であり二項演算 • は体の乗法である。 * GL(1). (ja)
  • 数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する: * 体、環、あるいはその演算の 1 つとして乗法をもつ他の構造の、可逆元が乗法の下でなす群。体 F の場合には、群は {F ∖ {0}, •} である、ただし 0 は F の零元であり二項演算 • は体の乗法である。 * GL(1). (ja)
dbo:wikiPageID
  • 3097659 (xsd:integer)
dbo:wikiPageLength
  • 1770 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90666264 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する: * 体、環、あるいはその演算の 1 つとして乗法をもつ他の構造の、可逆元が乗法の下でなす群。体 F の場合には、群は {F ∖ {0}, •} である、ただし 0 は F の零元であり二項演算 • は体の乗法である。 * GL(1). (ja)
  • 数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する: * 体、環、あるいはその演算の 1 つとして乗法をもつ他の構造の、可逆元が乗法の下でなす群。体 F の場合には、群は {F ∖ {0}, •} である、ただし 0 は F の零元であり二項演算 • は体の乗法である。 * GL(1). (ja)
rdfs:label
  • 乗法群 (ja)
  • 乗法群 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of