数学において、少なくとも二元を含む有限集合 X の置換(X から X への全単射)は大きく二つのクラス(偶置換と奇置換)に分けられる。X の任意の全順序を固定して、X の置換 σ の偶奇性(パリティ; 対性)は σ の転倒数、すなわち X の元の対 (x, y) で x < y かつ σ(x) > σ(y) なるものの数、の偶奇性によって定義することができる。 置換 σ の符号 (sign) あるいは符号数 (signature) sgn(σ) は、σ が偶置換ならば +1, 奇置換ならば −1 を割り当てる。置換の符号函数 sgn は対称群 Sn の交代指標と呼ばれる群指標を定義する。置換の符号に対する別の記法として、より一般のレヴィ–チヴィタ記号によって与えられる εσ がある。これは X から X への全単射とは限らない任意の写像に対して定義され、全単射でない写像に対しては 0 を割り当てる。 置換の符号は inv(σ) を σ の転倒数とすれば sgn(σ) = (−1)inv(σ) と明示的に書くことができる。 あるいは、置換の符号を置換の互換の積への分解によって定義することもできる。すなわち、置換 σ の互換の積への分解に現れる互換の数を m とするとき、 sgn(σ) = (−1)m

Property Value
dbo:abstract
  • 数学において、少なくとも二元を含む有限集合 X の置換(X から X への全単射)は大きく二つのクラス(偶置換と奇置換)に分けられる。X の任意の全順序を固定して、X の置換 σ の偶奇性(パリティ; 対性)は σ の転倒数、すなわち X の元の対 (x, y) で x < y かつ σ(x) > σ(y) なるものの数、の偶奇性によって定義することができる。 置換 σ の符号 (sign) あるいは符号数 (signature) sgn(σ) は、σ が偶置換ならば +1, 奇置換ならば −1 を割り当てる。置換の符号函数 sgn は対称群 Sn の交代指標と呼ばれる群指標を定義する。置換の符号に対する別の記法として、より一般のレヴィ–チヴィタ記号によって与えられる εσ がある。これは X から X への全単射とは限らない任意の写像に対して定義され、全単射でない写像に対しては 0 を割り当てる。 置換の符号は inv(σ) を σ の転倒数とすれば sgn(σ) = (−1)inv(σ) と明示的に書くことができる。 あるいは、置換の符号を置換の互換の積への分解によって定義することもできる。すなわち、置換 σ の互換の積への分解に現れる互換の数を m とするとき、 sgn(σ) = (−1)m とおくのである。置換のこのような互換の積への分解は一意ではないけれども、分解に現れる互換の総数の偶奇は置換ごとに一定しているので、この方法で置換の符号は矛盾なく定まる。 (ja)
  • 数学において、少なくとも二元を含む有限集合 X の置換(X から X への全単射)は大きく二つのクラス(偶置換と奇置換)に分けられる。X の任意の全順序を固定して、X の置換 σ の偶奇性(パリティ; 対性)は σ の転倒数、すなわち X の元の対 (x, y) で x < y かつ σ(x) > σ(y) なるものの数、の偶奇性によって定義することができる。 置換 σ の符号 (sign) あるいは符号数 (signature) sgn(σ) は、σ が偶置換ならば +1, 奇置換ならば −1 を割り当てる。置換の符号函数 sgn は対称群 Sn の交代指標と呼ばれる群指標を定義する。置換の符号に対する別の記法として、より一般のレヴィ–チヴィタ記号によって与えられる εσ がある。これは X から X への全単射とは限らない任意の写像に対して定義され、全単射でない写像に対しては 0 を割り当てる。 置換の符号は inv(σ) を σ の転倒数とすれば sgn(σ) = (−1)inv(σ) と明示的に書くことができる。 あるいは、置換の符号を置換の互換の積への分解によって定義することもできる。すなわち、置換 σ の互換の積への分解に現れる互換の数を m とするとき、 sgn(σ) = (−1)m とおくのである。置換のこのような互換の積への分解は一意ではないけれども、分解に現れる互換の総数の偶奇は置換ごとに一定しているので、この方法で置換の符号は矛盾なく定まる。 (ja)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3419754 (xsd:integer)
dbo:wikiPageLength
  • 3731 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 83543242 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:title
  • Even Permutation (ja)
  • Even Permutation (ja)
prop-ja:urlname
  • EvenPermutation (ja)
  • EvenPermutation (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学において、少なくとも二元を含む有限集合 X の置換(X から X への全単射)は大きく二つのクラス(偶置換と奇置換)に分けられる。X の任意の全順序を固定して、X の置換 σ の偶奇性(パリティ; 対性)は σ の転倒数、すなわち X の元の対 (x, y) で x < y かつ σ(x) > σ(y) なるものの数、の偶奇性によって定義することができる。 置換 σ の符号 (sign) あるいは符号数 (signature) sgn(σ) は、σ が偶置換ならば +1, 奇置換ならば −1 を割り当てる。置換の符号函数 sgn は対称群 Sn の交代指標と呼ばれる群指標を定義する。置換の符号に対する別の記法として、より一般のレヴィ–チヴィタ記号によって与えられる εσ がある。これは X から X への全単射とは限らない任意の写像に対して定義され、全単射でない写像に対しては 0 を割り当てる。 置換の符号は inv(σ) を σ の転倒数とすれば sgn(σ) = (−1)inv(σ) と明示的に書くことができる。 あるいは、置換の符号を置換の互換の積への分解によって定義することもできる。すなわち、置換 σ の互換の積への分解に現れる互換の数を m とするとき、 sgn(σ) = (−1)m (ja)
  • 数学において、少なくとも二元を含む有限集合 X の置換(X から X への全単射)は大きく二つのクラス(偶置換と奇置換)に分けられる。X の任意の全順序を固定して、X の置換 σ の偶奇性(パリティ; 対性)は σ の転倒数、すなわち X の元の対 (x, y) で x < y かつ σ(x) > σ(y) なるものの数、の偶奇性によって定義することができる。 置換 σ の符号 (sign) あるいは符号数 (signature) sgn(σ) は、σ が偶置換ならば +1, 奇置換ならば −1 を割り当てる。置換の符号函数 sgn は対称群 Sn の交代指標と呼ばれる群指標を定義する。置換の符号に対する別の記法として、より一般のレヴィ–チヴィタ記号によって与えられる εσ がある。これは X から X への全単射とは限らない任意の写像に対して定義され、全単射でない写像に対しては 0 を割り当てる。 置換の符号は inv(σ) を σ の転倒数とすれば sgn(σ) = (−1)inv(σ) と明示的に書くことができる。 あるいは、置換の符号を置換の互換の積への分解によって定義することもできる。すなわち、置換 σ の互換の積への分解に現れる互換の数を m とするとき、 sgn(σ) = (−1)m (ja)
rdfs:label
  • 置換の符号 (ja)
  • 置換の符号 (ja)
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of