命題「p⇒q」に対して、「q⇒p」を、元の命題の逆(ぎゃく、英: Converse)と言う。 ある命題とその逆の真偽は、必ずとも一致しない(逆は必ずしも真ならず)。この表現は日常生活や数学の中でことわざのように使用されることがある。 一致するような命題については「逆もまた真である」などと表現する。これは本来の用法とは異なる。「p⇒q」が真であり、「q⇒p」も真であるときに、 p と q は同値(必要十分条件)であるという。 命題「p⇒q」に対して、逆「q⇒p」の対偶「¬p⇒¬q」を、元の命題の裏と言う。命題「p⇒q」に対して、対偶「¬q⇒¬p」の逆「¬p⇒¬q」は裏に等しくなる。全ての命題に対して、逆と裏の真偽は一致する。 日常生活では、逆も必ず真であるような誤謬をすることもある。(後件肯定)

Property Value
dbo:abstract
  • 命題「p⇒q」に対して、「q⇒p」を、元の命題の逆(ぎゃく、英: Converse)と言う。 ある命題とその逆の真偽は、必ずとも一致しない(逆は必ずしも真ならず)。この表現は日常生活や数学の中でことわざのように使用されることがある。 一致するような命題については「逆もまた真である」などと表現する。これは本来の用法とは異なる。「p⇒q」が真であり、「q⇒p」も真であるときに、 p と q は同値(必要十分条件)であるという。 命題「p⇒q」に対して、逆「q⇒p」の対偶「¬p⇒¬q」を、元の命題の裏と言う。命題「p⇒q」に対して、対偶「¬q⇒¬p」の逆「¬p⇒¬q」は裏に等しくなる。全ての命題に対して、逆と裏の真偽は一致する。 日常生活では、逆も必ず真であるような誤謬をすることもある。(後件肯定) (ja)
  • 命題「p⇒q」に対して、「q⇒p」を、元の命題の逆(ぎゃく、英: Converse)と言う。 ある命題とその逆の真偽は、必ずとも一致しない(逆は必ずしも真ならず)。この表現は日常生活や数学の中でことわざのように使用されることがある。 一致するような命題については「逆もまた真である」などと表現する。これは本来の用法とは異なる。「p⇒q」が真であり、「q⇒p」も真であるときに、 p と q は同値(必要十分条件)であるという。 命題「p⇒q」に対して、逆「q⇒p」の対偶「¬p⇒¬q」を、元の命題の裏と言う。命題「p⇒q」に対して、対偶「¬q⇒¬p」の逆「¬p⇒¬q」は裏に等しくなる。全ての命題に対して、逆と裏の真偽は一致する。 日常生活では、逆も必ず真であるような誤謬をすることもある。(後件肯定) (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 28337 (xsd:integer)
dbo:wikiPageLength
  • 1430 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 90142706 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:author
  • Sakharov, Alex and Weisstein, Eric W. (ja)
  • Sakharov, Alex and Weisstein, Eric W. (ja)
prop-ja:date
  • 0001-02-01 (xsd:gMonthDay)
prop-ja:section
  • 1 (xsd:integer)
prop-ja:title
  • PropositionalCalculus (ja)
  • PropositionalCalculus (ja)
prop-ja:urlname
  • PropositionalCalculus (ja)
  • PropositionalCalculus (ja)
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 命題「p⇒q」に対して、「q⇒p」を、元の命題の逆(ぎゃく、英: Converse)と言う。 ある命題とその逆の真偽は、必ずとも一致しない(逆は必ずしも真ならず)。この表現は日常生活や数学の中でことわざのように使用されることがある。 一致するような命題については「逆もまた真である」などと表現する。これは本来の用法とは異なる。「p⇒q」が真であり、「q⇒p」も真であるときに、 p と q は同値(必要十分条件)であるという。 命題「p⇒q」に対して、逆「q⇒p」の対偶「¬p⇒¬q」を、元の命題の裏と言う。命題「p⇒q」に対して、対偶「¬q⇒¬p」の逆「¬p⇒¬q」は裏に等しくなる。全ての命題に対して、逆と裏の真偽は一致する。 日常生活では、逆も必ず真であるような誤謬をすることもある。(後件肯定) (ja)
  • 命題「p⇒q」に対して、「q⇒p」を、元の命題の逆(ぎゃく、英: Converse)と言う。 ある命題とその逆の真偽は、必ずとも一致しない(逆は必ずしも真ならず)。この表現は日常生活や数学の中でことわざのように使用されることがある。 一致するような命題については「逆もまた真である」などと表現する。これは本来の用法とは異なる。「p⇒q」が真であり、「q⇒p」も真であるときに、 p と q は同値(必要十分条件)であるという。 命題「p⇒q」に対して、逆「q⇒p」の対偶「¬p⇒¬q」を、元の命題の裏と言う。命題「p⇒q」に対して、対偶「¬q⇒¬p」の逆「¬p⇒¬q」は裏に等しくなる。全ての命題に対して、逆と裏の真偽は一致する。 日常生活では、逆も必ず真であるような誤謬をすることもある。(後件肯定) (ja)
rdfs:label
  • (ja)
  • (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of