Papers by William F. Laurance
The executive and legislative branches of Brazilian government have either proposed or taken a va... more The executive and legislative branches of Brazilian government have either proposed or taken a variety of initiatives that threaten biodiversity and ecosystems. Opposition by the scientific community has largely been ignored by decision-makers. In this short essay, we present recent examples of harmful policies that have great potential to erode biodiversity, and we suggest ways to communicate scientific knowledge to decision- makers. If the current gap between conservation science and policies is not filled, the country will threaten the maintenance of its natural capital and, consequently, the sustainability of essential societal activities in the long term.
We synthesize findings from one of the world's largest and longest-running experimental investiga... more We synthesize findings from one of the world's largest and longest-running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼1000 km 2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38-year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional-and global-change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long-term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction-prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating populations of species in response to a variety of external vicissitudes. Rare weather events such as droughts, windstorms and floods have had strong impacts on fragments and left lasting legacies of change. Both forest fragments and the intact forests in our study area appear to be influenced by larger-scale environmental drivers operating at regional or global scales. These drivers are apparently increasing forest productivity and have led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree-community composition, and increases in liana (woody vine) abundance. Such large-scale drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects for some species and ecological phenomena. Hence, the impacts of fragmentation on Amazonian biodiversity and ecosystem processes appear to be a consequence not only of local site features but also of broader changes occurring at landscape, regional and even global scales.
Tropical Conservation Science, 2012
Scientific reports, Jan 17, 2017
Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries a... more Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable ...
Ecology and evolution, 2017
The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems... more The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international effort...
Proceedings. Biological sciences, Jan 14, 2016
Lineages tend to retain ecological characteristics of their ancestors through time. However, for ... more Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic sig...
Tropical Conservation Science, 2015
Can the strategic incorporation of lianas (woody vines) into rainforest restoration plantings enh... more Can the strategic incorporation of lianas (woody vines) into rainforest restoration plantings enhance biodiversityconservation outcomes? Lianas are an integral component of primary tropical rainforests yet are often omitted from rainforest restoration plantings as they may damage trees and compete with them for resources. However, there is increasing evidence that many ecological and physiognomic characteristics of lianas may be of some value to restoration plantings, at least in certain contexts. We propose strategies for experimentally incorporating lianas into rainforest-restoration plantings to explore whether they can expedite rainforest establishment and enhance biodiversity-conservation outcomes.
Tropical Conservation Science, 2015
Nature communications, Jan 23, 2016
Human pressures on the environment are changing spatially and temporally, with profound implicati... more Human pressures on the environment are changing spatially and temporally, with profound implications for the planet's biodiversity and human economies. Here we use recently available data on infrastructure, land cover and human access into natural areas to construct a globally standardized measure of the cumulative human footprint on the terrestrial environment at 1 km(2) resolution from 1993 to 2009. We note that while the human population has increased by 23% and the world economy has grown 153%, the human footprint has increased by just 9%. Still, 75% the planet's land surface is experiencing measurable human pressures. Moreover, pressures are perversely intense, widespread and rapidly intensifying in places with high biodiversity. Encouragingly, we discover decreases in environmental pressures in the wealthiest countries and those with strong control of corruption. Clearly the human footprint on Earth is changing, yet there are still opportunities for conservation gains.
Scientific data, Aug 23, 2016
Remotely-sensed and bottom-up survey information were compiled on eight variables measuring the d... more Remotely-sensed and bottom-up survey information were compiled on eight variables measuring the direct and indirect human pressures on the environment globally in 1993 and 2009. This represents not only the most current information of its type, but also the first temporally-consistent set of Human Footprint maps. Data on human pressures were acquired or developed for: 1) built environments, 2) population density, 3) electric infrastructure, 4) crop lands, 5) pasture lands, 6) roads, 7) railways, and 8) navigable waterways. Pressures were then overlaid to create the standardized Human Footprint maps for all non-Antarctic land areas. A validation analysis using scored pressures from 3114×1 km(2) random sample plots revealed strong agreement with the Human Footprint maps. We anticipate that the Human Footprint maps will find a range of uses as proxies for human disturbance of natural systems. The updated maps should provide an increased understanding of the human pressures that drive m...
Scientific reports, Jan 20, 2016
Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is b... more Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests cou...
Ecology, Feb 1, 2006
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. ... more The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period, we monitored the density of 52 tree species in nine predominantly successional genera (in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest-dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (ca. 1,000 km 2 ) experimental landscape, with forest fragments ranging from 1-100 ha in area.
New Scientist, Aug 1, 2009
Wildlife Res, 1997
... Bats and gaps: microchiropteran community structure in a Queensland rain forest. Ecology 69, ... more ... Bats and gaps: microchiropteran community structure in a Queensland rain forest. Ecology 69, 19601969. ... Laurance, SG, and Laurance, WF (1995). A ground-trapping survey for small mammals in continuous forest and two isolated tropical rainforest reserves. ...
Conservation Biology, Oct 18, 2000
In 1997, the Amazon Basin experienced an exceptionally severe El Niño drought. We assessed effect... more In 1997, the Amazon Basin experienced an exceptionally severe El Niño drought. We assessed effects of this rare event on mortality rates of trees in intact rain forest based on data from permanent plots. mortality rates averaged only 1.12% per year prior to the drought. During the drought year, annual mortality jumped to 1.91% but abruptly fell back to 1.23% in the year following El Niño. Trees dying during the drought did not differ significantly in size or species composition from those that died previously, and there was no detectable effect of soil texture on mortality rates. These results suggest that intact Amazonian rainforests are relatively resistant to severe El Niño events.
Uploads
Papers by William F. Laurance