Naar inhoud springen

Algebra (ringtheorie)

Uit Wikipedia, de vrije encyclopedie

In de ringtheorie, een deelgebied van de wiskunde, is een algebra over een commutatieve ring een algemene vorm van een commutatieve ring.

In dit artikel wordt van alle ringen aangenomen dat zij unitair zijn.

Laat een commutatieve ring zijn. Een algebra is een R-moduul , waarop een binaire bewerking

is gedefinieerd, de -vermenigvuldiging. is een bilineaire afbeelding. Dat houdt in dat voor alle scalairen en alle elementen geldt:

.

Associatieve algebra's

[bewerken | brontekst bewerken]

Als een monoïde onder -vermenigvuldiging is, het voldoet aan de eisen van associativiteit, identiteit en totaliteit), dan noemt men de -algebra een associatieve algebra. Een associatieve algebra vormt een ring over en geeft een algemene vorm van een ring. Een gelijkwaardige definitie van een associatieve -algebra is een ringhomomorfisme , zodanig dat het beeld van is opgenomen in het centrum van .