Оберон (спутник)
Оберон | |
---|---|
Спутник Урана | |
| |
Первооткрыватель | Уильям Гершель |
Дата открытия | 11 января 1787[1] |
Орбитальные характеристики | |
Большая полуось | 583 520 км[2] |
Эксцентриситет | 0,0014[2] |
Период обращения | 13,463 дня[2] |
Наклонение орбиты | 0,058° (к экватору Урана)[2] |
Физические характеристики | |
Диаметр | 1522,8 ±5,2 км[a] |
Средний радиус | 761,4 ±2,6 км (0,1194 земного)[3] |
Площадь поверхности | 7,285 млн км²[b] |
Масса | 3,014⋅1021 кг[4] |
Плотность | 1,63 ±0,05 г/см³[4] |
Объём | 1 849 000 000 км³[c] |
Ускорение свободного падения | 0,346 м/с²[d] |
Первая космическая скорость (v1) | 514,0 м/с |
Вторая космическая скорость (v2) | 726,9 м/с |
Период вращения вокруг оси | синхронизирован (обращён к Урану одной стороной)[5] |
Наклон оси вращения | ~0°[2] |
Альбедо | 0,31 (геометрическое) 0,14 (Бонда)[6] |
Видимая звёздная величина | 14,1[7] |
Температура поверхности | 70-80 K (−203… −193 °C)[8] |
Медиафайлы на Викискладе | |
Информация в Викиданных ? |
Оберо́н — второй по размеру и массе спутник Урана, девятый по массе и десятый по размеру спутник в Солнечной системе. Известен также как Уран IV. Открыт Уильямом Гершелем в 1787 году. Назван в честь царя фей и эльфов из произведения Уильяма Шекспира «Сон в летнюю ночь». Самый далёкий от Урана среди его крупных спутников. Его орбита частично расположена вне магнитосферы планеты .
Вполне вероятно, что Оберон сформировался из аккреционного диска, окружавшего Уран сразу после образования. Спутник состоит примерно из равного количества камня и льда и, вероятно, дифференцирован на каменное ядро и ледяную мантию. На их границе, возможно, есть слой жидкой воды .
Поверхность Оберона тёмная с красным оттенком. Его рельеф формировался в основном ударами астероидов и комет, создавшими многочисленные, до 210 км в диаметре, кратеры. Оберон обладает системой каньонов (грабенов), образовавшихся при растяжении коры в результате расширения недр на раннем этапе его истории .
Оберон, как и всю систему Урана, изучал с близкого расстояния лишь один космический аппарат — «Вояджер-2». Пролетев вблизи спутника в январе 1986 года, он сделал несколько снимков, которые позволили изучить около 40 % его поверхности. .
История открытия, наименования и изучения
[править | править код]Оберон был открыт Уильямом Гершелем 11 января 1787 года (в один день с Титанией и через 6 лет после Урана)[1][9]. Позднее Гершель сообщил об открытии ещё четырёх спутников[10], но эти наблюдения оказались ошибочными[11]. В течение 50 лет после их открытия Титанию и Оберон не наблюдал никто, кроме Гершеля[12] из-за слабой проницающей способности телескопов того времени. Сейчас эти спутники можно наблюдать с Земли с помощью любительских телескопов высокого класса[7].
Первоначально Оберон называли «Вторым спутником Урана», а в 1848 году Уильям Лассел дал ему имя «Уран II»[13], хотя он иногда использовал и нумерацию Уильяма Гершеля, в которой Титания и Оберон именовались «Уран II» и «Уран IV» соответственно[14]. Наконец, в 1851 году Лассел обозначил четыре известных на тот момент спутника римскими цифрами в порядке их удаления от планеты. С тех пор Оберон носит обозначение «Уран IV»[15].
Впоследствии все спутники Урана были названы в честь персонажей произведений Вильяма Шекспира и Александра Поупа. Оберон получил своё название в честь Оберона — царя фей и эльфов из пьесы Шекспира «Сон в летнюю ночь»[16]. Названия для всех четырёх известных на тот момент спутников Урана были предложены сыном Гершеля, Джоном в 1852 году по просьбе Уильяма Лассела[17], который годом ранее обнаружил два других спутника — Ариэль и Умбриэль[18].
Единственные на сегодняшний день изображения Оберона, где видно детали поверхности, были получены космическим аппаратом «Вояджер-2». В январе 1986 года он сблизился с Обероном на расстояние в 470 600 км[19] и сделал снимки с разрешением около 6 километров (с лучшим разрешением были сняты только Миранда и Ариэль)[20]. Изображения охватывают 40 % поверхности спутника, но только 25 % засняты с качеством, достаточным для геологического картирования. Во время пролёта «Вояджера» Солнце освещало южное полушарие Оберона (как и других спутников), северное же полушарие было погружено в полярную ночь и, таким образом, не могло быть изучено[5].
До полёта «Вояджера-2» о спутнике было известно очень мало. В результате наземных спектрографических наблюдений было установлено наличие на Обероне водяного льда. Никакой другой космический аппарат никогда не посещал систему Урана и, в частности, Оберон. Не планируются посещения и в обозримом будущем.
Орбита
[править | править код]Оберон — самый удалённый от Урана из пяти его крупных спутников[e]. Радиус его орбиты — 584 000 километров. Орбита имеет небольшой эксцентриситет и наклон к экватору планеты[2]. Его орбитальный период равен 13,46 суток и совпадает с периодом вращения вокруг своей оси. Иными словами, Оберон является синхронным спутником, всегда повёрнутым одной и той же стороной к планете[5]. Значительная часть орбиты Оберона проходит вне магнитосферы Урана[21]. В результате этого его поверхность подвержена прямому воздействию солнечного ветра[8]. А ведомое полушарие бомбардируется ещё и частицами магнитосферной плазмы, которые движутся вокруг Урана намного быстрее Оберона (с периодом, равным периоду осевого вращения планеты). Такая бомбардировка может приводить к потемнению этого полушария, что и наблюдается на всех спутниках Урана, кроме Оберона[8].
Так как Уран вращается вокруг Солнца «на боку», а плоскость его экватора примерно совпадает с плоскостью экватора (и орбиты) его крупных спутников, смена сезонов на них очень своеобразна. Каждый полюс Оберона 42 года находится в полной темноте и 42 года непрерывно освещён, причём во время летнего солнцестояния Солнце на полюсе почти достигает зенита[8]. Пролёт «Вояджера-2» в 1986 году совпал с летним солнцестоянием в южном полушарии, тогда как почти всё северное находилось в темноте.
Раз в 42 года, во время равноденствия на Уране, Солнце (и вместе с ним Земля) проходит через его экваториальную плоскость, и тогда можно наблюдать взаимные покрытия его спутников. Несколько таких событий наблюдалось в 2006—2007 годах, в том числе покрытие Умбриэля Обероном 4 мая 2007 года, которое продолжалось почти шесть минут[22].
Состав и внутреннее строение
[править | править код]Оберон — второй по величине и массе спутник Урана и девятый по массе спутник в Солнечной системе[f]. Плотность Оберона составляет 1,63 г/см³[4] (выше, чем у спутников Сатурна) и показывает, что Оберон состоит примерно в равных количествах из водяного льда и тяжёлых неледяных составляющих, которые могут включать камень и органику[5][23]. Наличие водяного льда (в виде кристаллов на поверхности спутника) показали и спектрографические наблюдения[8]. При сверхнизких температурах, характерных для спутников Урана, лёд становится подобным камню (лёд Ic). Его абсорбционные полосы на ведомом полушарии сильнее, чем на ведущем, тогда как у остальных спутников Урана — наоборот[8]. Причина этого различия полушарий неизвестна. Возможно, дело в том, что ведущее полушарие более подвержено метеоритным ударам, которые удаляют с него лёд[8]. Тёмный материал мог образоваться в результате воздействия ионизирующего излучения на органические вещества, в частности, на метан, присутствующий там в составе клатратов[5][24].
Оберон может быть дифференцирован на каменное ядро и ледяную мантию[23]. Если это действительно так, то по плотности спутника можно определить, что радиус ядра составляет около 63 % радиуса спутника (480 км), а масса ядра примерно равна 54 % массы Оберона. Давление в центре Оберона — около 0,5 ГПа (5 кбар)[23]. Состояние ледяной мантии неизвестно. Если лёд содержит достаточное количество аммиака или другого антифриза, то на границе ядра и мантии Оберона может быть жидкий океан. Толщина этого океана, если он существует, может достигать 40 километров, а температура составляет около 180 К[23]. Впрочем, внутреннее строение Оберона во многом зависит от его термальной истории, которая сейчас малоизвестна.
Поверхность
[править | править код]Поверхность Оберона довольно тёмная (из крупных спутников Урана темнее него только Умбриэль)[6]. Его альбедо Бонда — около 14 %[6]. Подобно Миранде, Ариэлю и Титании, Оберон демонстрирует сильный оппозиционный эффект: при увеличении фазового угла с 0° до 1° отражательная способность его поверхности уменьшается с 31 % до 22 %[6]. Это указывает на её большую пористость (вероятно, результат микрометеоритной бомбардировки)[25]. Поверхность спутника в основном красного цвета, за исключением белых или слегка голубоватых свежих выбросов вокруг ударных кратеров[26]. Оберон — самый красный среди крупных спутников Урана. Его ведущее полушарие намного краснее ведомого, поскольку на нём больше тёмно-красного материала. Обычно покраснение поверхности небесных тел — результат космического выветривания, вызванного бомбардировкой поверхности заряженными частицами и микрометеоритами[24]. Однако в случае с Обероном покраснение поверхности, вероятно, вызвано оседанием красноватого материала, который поступает из внешней части системы Урана (возможно, с нерегулярных спутников). Это оседание происходит в основном на ведущем полушарии[27].
Названия на Обероне получили 9 кратеров и 1 каньон[28][5]. Концентрация кратеров на Обероне больше, чем на других спутниках Урана. Поверхность насыщена ими, то есть при появлении новых кратеров разрушается примерно столько же старых, и их количество не меняется. Это показывает, что поверхность Оберона древнее, чем поверхность остальных спутников Урана[20], и говорит о давнем отсутствии на ней геологической активности. Диаметр самого большого из обнаруженных кратеров[20] — кратера Гамлет[англ.][29] — составляет 206 километров. От многих кратеров расходятся светлые лучи, предположительно, выбросы льда[5]. Дно самых больших кратеров тёмное. На некоторых снимках на лимбе Оберона видно 11-километровую возвышенность. Не исключено, что это — центральная горка ещё одного кратера, и тогда его диаметр должен быть около 375 км[30].
Поверхность Оберона пересечена системой каньонов (хотя там они гораздо менее распространены, чем на Титании[5]). Каньоны (лат. chasma, мн. ч. chasmata) — это длинные впадины с крутыми склонами; вероятно, они образовались вследствие разломов. Возраст разных каньонов заметно различается. Некоторые из них пересекают выбросы из кратеров с лучами, показывая, что эти кратеры старше разломов[31]. Самый заметный каньон Оберона — каньон Моммур[англ.][32].
Рельеф Оберона сформирован двумя противодействующими процессами: образованием ударных кратеров и эндогенным восстановлением поверхности[31]. Первый процесс является основным и действует на протяжении всей истории спутника[20], а второй — лишь в её начале, когда недра спутника ещё сохраняли геологическую активность. Эндогенные процессы на Обероне имеют в основном тектоническую природу. Они привели к образованию каньонов — гигантских трещин в ледяной коре. Растрескивание коры было вызвано, скорее всего, расширением Оберона, которое произошло в два этапа, соответствующих появлению старых и молодых каньонов. При этом площадь его поверхности увеличилась примерно на 0,5 % и 0,4 % соответственно[31].
На дне крупнейших кратеров Оберона (таких как Гамлет, Макбет и Отелло) видно тёмное вещество. Кроме того, тёмные пятна есть и вне кратеров — в основном на ведущем полушарии. Некоторые учёные предполагают, что эти пятна — следствие криовулканизма[20], когда сквозь образовавшиеся разрывы в ледяной коре на поверхность изливалась загрязнённая вода, которая при застывании образовала тёмную поверхность. Таким образом, это — аналоги лунных морей, где вместо воды была лава. По другой версии тёмное вещество выбито из глубинных слоёв ударами метеоритов, что возможно, если Оберон в некоторой мере дифференцирован, то есть имеет ледяную кору и недра из более тёмного материала[26].
Происхождение и эволюция
[править | править код]Как и все крупные спутники Урана, Оберон, вероятно, сформировался из газо-пылевого аккреционного диска, который либо существовал вокруг Урана в течение какого-то времени после формирования планеты, либо появился при гигантском столкновении, которое, скорее всего, и дало Урану очень большой наклон оси вращения[35]. Точный состав диска неизвестен, однако более высокая плотность спутников Урана по сравнению со спутниками Сатурна указывает на то, что он содержал относительно мало воды[g][5]. Значительное количество углерода и азота могло находиться в виде оксида углерода (CO) и молекулярного азота (N2), а не метана и аммиака[35]. Спутник, сформировавшийся из такого диска, должен содержать меньше водяного льда (с клатратами CO и N2) и больше каменистых пород, что объяснило бы его высокую плотность[5].
Образование Оберона, вероятно, продолжалось в течение нескольких тысяч лет[35]. Столкновения, сопровождавшие аккрецию, нагревали внешние слои спутника[36]. Максимальная температура (около 230 K), вероятно, была достигнута на глубине около 60 километров[36]. После завершения формирования внешний слой Оберона остыл, а внутренний стал нагреваться из-за распада радиоактивных элементов в его недрах[5]. Поверхностный слой за счёт охлаждения сжимался, в то время как нагревающийся внутренний расширялся. Это вызвало в коре Оберона сильное механическое напряжение, которое могло привести к образованию разломов. Возможно, именно так появилась существующая сейчас система каньонов. Этот процесс длился около 200 миллионов лет[37] и, следовательно, прекратился несколько миллиардов лет назад[5].
Тепла от изначальной аккреции и продолжавшегося далее распада радиоактивных элементов могло хватить для плавления льда в недрах, если в нём присутствовали какие-либо антифризы — аммиак или соль[36]. Таяние могло привести к отделению льда от камня и формированию каменного ядра, окруженного ледяной мантией. На их границе мог появиться слой жидкой воды, содержащей аммиак. Эвтектическая температура их смеси — 176 К[23]. Если температура океана опускалась ниже этого значения, то сейчас он замёрзший. Замерзание привело бы к его расширению и растрескиванию коры и образованию каньонов[20]. Тем не менее, современные знания о геологической истории Оберона являются весьма ограниченными.
Оберон в культуре
[править | править код]Вокруг событий, произошедших с земной экспедицией на Обероне, строится сюжет научно-фантастической дилогии Сергея Павлова «Лунная радуга». По первой повести дилогии был снят одноимённый позднесоветский фильм.
Одна из повестей американского писателя-фантаста Эдмонда Гамильтона — «Сокровище Громовой Луны» — описывает Оберон как планету, покрытую вулканами, с каменной поверхностью и с океанами из жидкой лавы, живыми существами-«огневиками» и залежью редчайшего элемента-антигравитанта — «левиума».
Оберон также упомянут в песне Юрия Визбора «Да будет старт», посвященной космонавтам: Мы построим лестницу до звёзд, мы пройдем сквозь чёрные циклоны от смоленских солнечных берез до туманных далей Оберона….
Профессор Никлаус Вирт назвал свой последний язык программирования Обероном в честь этого спутника Урана[38].
См. также
[править | править код]Комментарии
[править | править код]- ^ Диаметр спутника вычисляется по r таким образом: .
- ^ Площадь поверхности спутника вычисляется по r таким образом: .
- ^ Объём v вычисляется по радиусу r таким образом: .
- ^ Ускорение свободного падения вычисляется с помощью массы m, гравитационной постоянной G и радиуса r таким образом: .
- ^ Пять основных спутников Урана: Миранда, Ариэль, Умбриэль, Титания и Оберон.
- ^ Восемь спутников, более массивных, чем Оберон: Ганимед, Титан, Каллисто, Ио, Луна, Европа, Тритон и Титания[2].
- ^ Например, Тефия — спутник Сатурна — имеет плотность 0,97 г/см³, что указывает на то, что он более чем на 90 % состоит из воды[8].
Примечания
[править | править код]- ↑ 1 2 Herschel William, Sr. An Account of the Discovery of Two Satellites Revolving Round the Georgian Planet (англ.) // Philosophical Transactions of the Royal Society of London. — 1787. — Vol. 77, no. 0. — P. 125—129. — doi:10.1098/rstl.1787.0016.
- ↑ 1 2 3 4 5 6 7 Planetary Satellite Mean Orbital Parameters . Jet Propulsion Laboratory, California Institute of Technology. Дата обращения: 7 июля 2011. Архивировано 22 августа 2011 года.
- ↑ Thomas P. C. Radii, shapes, and topography of the satellites of Uranus from limb coordinates (англ.) // Icarus. — Elsevier, 1988. — Vol. 73, no. 3. — P. 427—441. — doi:10.1016/0019-1035(88)90054-1. — .
- ↑ 1 2 3 Jacobson R. A.; ampbell, J.K.; Taylor, A.H. and Synnott, S.P. The masses of Uranus and its major satellites from Voyager tracking data and Earth based Uranian satellite data (англ.) // The Astronomical Journal. — IOP Publishing, 1992. — Vol. 103, no. 6. — P. 2068—2078. — doi:10.1086/116211. — .
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 Smith B. A.; Soderblom, L.A.; Beebe, A. et al. Voyager 2 in the Uranian System: Imaging Science Results (англ.) // Science. — 1986. — Vol. 233, no. 4759. — P. 97—102. — doi:10.1126/science.233.4759.43. — . — PMID 17812889.
- ↑ 1 2 3 4 Karkoschka E. Comprehensive Photometry of the Rings and 16 Satellites of Uranus with the Hubble Space Telescope (англ.) // Icarus. — Elsevier, 2001. — Vol. 151. — P. 51—68. — doi:10.1006/icar.2001.6596. — .
- ↑ 1 2 Newton Bill; Teece, Philip. The guide to amateur astronomy. — Cambridge: Cambridge University Press, 1995. — P. 109. — ISBN 978-0-521-44492-7.
- ↑ 1 2 3 4 5 6 7 8 Grundy W. M.; Young, L.A.; Spencer, J.R.; et al. Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations (англ.) // Icarus. — Elsevier, 2006. — Vol. 184, no. 2. — P. 543—555. — doi:10.1016/j.icarus.2006.04.016. — . — arXiv:0704.1525.
- ↑ Herschel William, Sr. On George's Planet and its satellites (англ.) // Philosophical Transactions of the Royal Society of London. — 1788. — Vol. 78, no. 0. — P. 364—378. — doi:10.1098/rstl.1788.0024. — .
- ↑ Herschel William, Sr. On the Discovery of Four Additional Satellites of the Georgium Sidus; The Retrograde Motion of Its Old Satellites Announced; And the Cause of Their Disappearance at Certain Distances from the Planet Explained (англ.) // Philosophical Transactions of the Royal Society of London. — 1798. — Vol. 88, no. 0. — P. 364—378. — doi:10.1098/rstl.1798.0005. — .
- ↑ Struve O. Note on the Satellites of Uranus (англ.) // Monthly Notices of the Royal Astronomical Society. — Oxford University Press, 1848. — Vol. 8, no. 3. — P. 44—47. — doi:10.1093/mnras/8.3.43. — .
- ↑ Herschel, John. On the Satellites of Uranus (англ.) // Monthly Notices of the Royal Astronomical Society. — Oxford University Press, 1834. — Vol. 3, no. 5. — P. 35—36. — doi:10.1093/mnras/3.5.35. — . — .
- ↑ Lassell, W. Observations of Satellites of Uranus (англ.) // Monthly Notices of the Royal Astronomical Society. — Oxford University Press, 1848. — Vol. 8, no. 3. — P. 43—44. — doi:10.1093/mnras/10.6.135. — .
- ↑ Lassell, W. Bright Satellites of Uranus (англ.) // Monthly Notices of the Royal Astronomical Society. — Oxford University Press, 1850. — Vol. 10, no. 6. — P. 135. — .
- ↑ Lassell, W. Letter from William Lassell, Esq., to the Editor (англ.) // The Astronomical Journal. — IOP Publishing, 1851. — Vol. 2, no. 33. — P. 70. — doi:10.1086/100198. — .
- ↑ Kuiper G. P. The Fifth Satellite of Uranus (англ.) // Publications of the Astronomical Society of the Pacific. — 1949. — Vol. 61, no. 360. — P. 129. — doi:10.1086/126146. — .
- ↑ Lassell W. Beobachtungen der Uranus-Satelliten (англ.) // Astronomische Nachrichten. — Wiley-VCH, 1852. — Vol. 34. — P. 325. — .
- ↑ Lassell W. On the interior satellites of Uranus (англ.) // Monthly Notices of the Royal Astronomical Society. — Oxford University Press, 1851. — Vol. 12. — P. 15—17. — .
- ↑ Stone E. C. The Voyager 2 Encounter With Uranus (англ.) // Journal of Geophysical Research[англ.]. — 1987. — Vol. 92, no. A13. — P. 14,873—14,876. — doi:10.1029/JA092iA13p14873. — .
- ↑ 1 2 3 4 5 6 Plescia J. B. Cratering history of the Uranian satellites: Umbriel, Titania and Oberon (англ.) // Journal of Geophysical Research[англ.]. — 1987. — Vol. 92, no. A13. — P. 14918—14932. — doi:10.1029/JA092iA13p14918. — .
- ↑ Ness N. F.; Acuna, Mario H.; Behannon, Kenneth W.; et al. Magnetic Fields at Uranus (англ.) // Science. — 1986. — Vol. 233, no. 4759. — P. 85—89. — doi:10.1126/science.233.4759.85. — . — PMID 17812894.
- ↑ Hidas M.G.; Christou, A.A.; Brown, T.M. An observation of a mutual event between two satellites of Uranus (англ.) // Monthly Notices of the Royal Astronomical Society: Letters. — 2008. — Vol. 384, no. 1. — P. L38–L40. — doi:10.1111/j.1745-3933.2007.00418.x. — .
- ↑ 1 2 3 4 5 Hussmann H.; Sohl, Frank; Spohn, Tilman. Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects (англ.) // Icarus. — Elsevier, 2006. — Vol. 185, no. 1. — P. 258—273. — doi:10.1016/j.icarus.2006.06.005. — . Архивировано 11 октября 2007 года.
- ↑ 1 2 Bell III J.F.; McCord, T.B. A search for spectral units on the Uranian satellites using color ratio images (англ.) // Lunar and Planetary Science Conference, 21st, Mar. 12-16, 1990. — Houston, TX, United States: Lunar and Planetary Sciences Institute, 1991. — P. 473—489. — . Архивировано 17 февраля 2023 года.
- ↑ Buratti B. J., Thomas P. C. 4.4. The Satellites of Uranus // Encyclopedia of the Solar System / T. Spohn, D. Breuer, T. Johnson. — 3. — Elsevier, 2014. — P. 774. — 1336 p. — ISBN 9780124160347.
- ↑ 1 2 Helfenstein P.; Hiller, J.; Weitz, C. and Veverka, J. Oberon: color photometry and its geological implications (англ.) // Abstracts of the Lunar and Planetary Science Conference. — Houston: Lunar and Planetary Sciences Institute, 1990. — Vol. 21. — P. 489—490. — .
- ↑ Buratti B. J.; Mosher, Joel A. Comparative global albedo and color maps of the Uranian satellites (англ.) // Icarus. — Elsevier, 1991. — Vol. 90. — P. 1—13. — doi:10.1016/0019-1035(91)90064-Z. — .
- ↑ 1 2 Oberon Nomenclature Table Of Contents . Gazetteer of Planetary Nomenclature. USGS Astrogeology. Дата обращения: 21 октября 2022. Архивировано 21 октября 2022 года.
- ↑ Oberon: Hamlet . Gazetteer of Planetary Nomenclature. USGS Astrogeology. Дата обращения: 21 октября 2022. Архивировано 21 сентября 2022 года.
- ↑ Moore J. M.; Schenk, Paul M.; Bruesch, Lindsey S. et.al. Large impact features on middle-sized icy satellites (англ.) // Icarus. — Elsevier, 2004. — Vol. 171, no. 2. — P. 421—443. — doi:10.1016/j.icarus.2004.05.009. — . Архивировано 2 октября 2018 года.
- ↑ 1 2 3 Croft S.K. New geological maps of Uranian satellites Titania, Oberon, Umbriel and Miranda (англ.) // Proceeding of Lunar and Planetary Sciences. — Houston: Lunar and Planetary Sciences Institute, 1989. — Vol. 20. — P. 205C. Архивировано 31 августа 2017 года.
- ↑ Oberon: Mommur Chasma . Gazetteer of Planetary Nomenclature. USGS Astrogeology. Дата обращения: 21 октября 2022. Архивировано 21 января 2022 года.
- ↑ Categories for Naming Features on Planets and Satellites (англ.). Gazetteer of Planetary Nomenclature. International Astronomical Union (IAU) Working Group for Planetary System Nomenclature (WGPSN). Дата обращения: 21 октября 2022. Архивировано 21 октября 2022 года.
- ↑ Strobell M.E.; Masursky, H. New Features Named on the Moon and Uranian Satellites (англ.) // Abstracts of the Lunar and Planetary Science. — 1987. — Vol. 18. — P. 964—965. — .
- ↑ 1 2 3 Mousis O. Modeling the thermodynamical conditions in the Uranian subnebula — Implications for regular satellite composition (англ.) // Astronomy and Astrophysics. — EDP Sciences, 2004. — Vol. 413. — P. 373—380. — doi:10.1051/0004-6361:20031515. — .
- ↑ 1 2 3 Squyres S. W.; Reynolds, Ray T.; Summers, Audrey L.; Shung, Felix. Accretional heating of satellites of Saturn and Uranus (англ.) // Journal of Geophysical Research[англ.]. — 1988. — Vol. 93, no. B8. — P. 8,779—8,794. — doi:10.1029/JB093iB08p08779. — .
- ↑ Hillier J.; Squyres, Steven. Thermal stress tectonics on the satellites of Saturn and Uranus (англ.) // Journal of Geophysical Research[англ.]. — 1991. — Vol. 96, no. E1. — P. 15,665—15,674. — doi:10.1029/91JE01401. — .
- ↑ M. Reiser, N. Wirth. Programming in Oberon . Дата обращения: 15 октября 2009. Архивировано 25 марта 2016 года.
Ссылки
[править | править код]- Оберон на сайте ГАИШ.
- Arnett, Bill. Oberon profile . The Nine Planets (22 декабря 2004).
- Arnett, Bill. Seeing the Solar System . The Nine Planets (17 ноября 2004).
- Hamilton, Calvin J. Oberon . Views of the Solar System web site (2001).
- Oberon: Overview . NASA's Solar System Exploration web site. Дата обращения: 26 июня 2020. Архивировано из оригинала 25 сентября 2015 года.
- Oberon Nomenclature . USGS Planetary Nomenclature web site.
Эта статья входит в число хороших статей русскоязычного раздела Википедии. |