Ребро (геометрия)

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Три ребра AB, BC и CA, каждое из которых соединяет две вершины треугольника.

Многоугольник, ограниченный рёбрами (в данном случае — квадрат, имеющий 4 ребра).

Каждое ребро является общим для двух граней многогранника, в данном случае, куба.

Любое ребро является общим для трёх и более граней четырёхмерного многогранника, как видно на этой проекции тессеракта.

Ребро в геометрии — отрезок, соединяющий две вершины многоугольника или многогранника (в размерностях 3 и выше)[1]. В многоугольниках ребро является отрезком, лежащим на границе[2] и чаще называется стороной многоугольника. В трёхмерных многогранниках и в многогранниках большей размерности ребро — это отрезок, общий для двух граней[3]. Отрезок, соединяющий две вершины и проходящий через внутренние или внешние точки, ребром не является и называется диагональю.

Связь с рёбрами графа

[править | править код]

Любой многогранник может быть представлен его рёберным скелетом[англ.], то есть графом, вершинами которого служат геометрические вершины многогранника, а рёбра графа соответствуют геометрическим рёбрам[4]. И обратно, графы, являющиеся скелетами трёхмерных многогранников по теореме Штайница — то же самое, что вершинно k-связные планарные графы[5].

Число рёбер в многограннике

[править | править код]

Любая поверхность выпуклого многогранника имеет эйлерову характеристику

где  — число вершин,  — число рёбер, а  — число граней. Это равенство известно как формула Эйлера. Таким образом, число рёбер на 2 меньше суммы числа вершин и граней. Например, куб имеет 8 вершин и 6 граней, а потому (по формуле) 12 рёбер.

Инцидентность другим граням

[править | править код]

В многоугольнике в каждой вершине сходятся два ребра (стороны). По теореме Балинского по меньшей мере рёбер сходятся в каждой вершине -мерного выпуклого многогранника[6]. Аналогично, в трёхмерном многограннике в точности две двумерные грани имеют общее ребро[7], в то время как в многогранниках более высоких размерностей общее ребро могут иметь три и более двумерных граней.

Альтернативная терминология

[править | править код]

В теории выпуклых многогранников высоких размерностей (свыше 3) фасета (сторона -мерного многогранника) — это -мерная грань. Таким образом, рёбра (стороны) многоугольника являются также фасетами (для трёхмерных многогранников фасетами будут грани)[8].

Примечания

[править | править код]
  1. Ziegler, 1995, с. 51, Definition 2.1.
  2. Weisstein, Eric W. «Polygon Edge.» From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolygonEdge.html Архивная копия от 26 июля 2020 на Wayback Machine
  3. Weisstein, Eric W. «Polytope Edge.» From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PolytopeEdge.html Архивная копия от 24 мая 2016 на Wayback Machine
  4. Senechal, 2013, с. 81.
  5. Pisanski, Randić, 2000, с. 174–194.
  6. Balinski, 1961, с. 431–434.
  7. Wenninger, 1974, с. 1.
  8. Seidel, 1986, с. 404–413.

Литература

[править | править код]
  • Günter M. Ziegler. Lectures on Polytopes. — Springer, 1995. — Т. 152. — (Graduate Texts in Mathematics).
  • M. L. Balinski. On the graph structure of convex polyhedra in n-space // Pacific Journal of Mathematics. — 1961. — Vol. 11. — Вып. 2. — doi:10.2140/pjm.1961.11.431.
  • Magnus J. Wenninger. Polyhedron Models. — Cambridge University Press, 1974. — ISBN 9780521098595.
  • Marjorie Senechal. Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination. — Springer, 2013. — ISBN 9780387927145.
  • Tomaž Pisanski, Milan Randić. Geometry at work / Catherine A. Gorini. — Washington, DC: Math. Assoc. America, 2000. — Т. 53. — (MAA Notes).. См., в частности, теорему 3, стр. 176.
  • Raimund Seidel. Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing (STOC '86). — 1986. — doi:10.1145/12130.12172.