U vektorskoj analizi i teoriji polja , rotor ili rotacija (rot, eng. curl ) je veličina koja odražava svojstva vektorskoga polja u prostoru. Najviše se primjenjuje u fizici , pogotovo u elektromagnetizmu i hidrodinamici .
Shematski prikaz uz definiciju rotacije vektorskoga polja
Pogledajmo linijski integral vektorskog polja
W
→
{\displaystyle {\overrightarrow {W}}}
duž zatvorne krivulje
C
{\displaystyle C}
koja ograničava površinu
S
{\displaystyle S}
. Premostimo krivulju
nekim lukom, tako da je vanjska krivulja razdvojena na dvije (
C
1
+
C
2
=
C
{\displaystyle C_{1}+C_{2}=C}
). Pri integriranju sada udio imaju samo vanjski dijelovi početne
linije, jer se po luku integrira jednom u jedom, a drugi put u suprotom smijeru pa se taj integral poništava (v. sl.). Naravno, isto se događa i
za velik broj razdioba početne površine
S
{\displaystyle S}
:
∮
W
→
d
S
→
=
∫
C
W
→
d
S
→
=
∑
i
=
1
N
∫
C
i
W
→
d
S
→
i
.
{\displaystyle \oint {\overrightarrow {W}}d{\vec {S}}=\int \limits _{C}{\overrightarrow {W}}d{\vec {S}}=\sum _{i=1}^{N}\int \limits _{C_{i}}{\overrightarrow {W}}d{\vec {S}}_{i}.}
Uzmimo sada omjer te vrijednosti i infinitezimalno malog dijela površine
A
i
{\displaystyle A_{i}}
koji okružuje krivulja
C
i
{\displaystyle C_{i}}
. Pustimo li da
N
↦
∞
{\displaystyle N\mapsto \infty }
, odnosno
A
i
↦
0
{\displaystyle A_{i}\mapsto 0}
, dobivamo graničnu vrijednost koja predstavlja skalarnu veličinu pridruženu određenoj točki prostora, pa je
stoga možemo smatrati komponentom vektora . Pomnožimo li dati izraz s vektorom normale
n
^
{\displaystyle {\hat {n}}}
, dolazimo upravo do definicije rotacje ili
rotora vektorskog polja:
n
^
⋅
rot
W
→
=
d
e
f
.
lim
A
i
→
0
∫
C
i
W
→
d
S
→
A
i
=
lim
Δ
S
→
0
∮
W
→
d
S
→
Δ
S
.
{\displaystyle {\hat {n}}\cdot {\mbox{rot}}{\overrightarrow {W}}{\stackrel {def.}{=}}\lim _{A_{i}\rightarrow 0}{\frac {\int \limits _{C_{i}}{\overrightarrow {W}}d{\vec {S}}}{A_{i}}}=\lim _{\Delta S\rightarrow 0}{\frac {\oint {\overrightarrow {W}}d{\vec {S}}}{\Delta S}}.}
Nije nužno da ploha omeđena krvuljom koju promatramo leži u ravnini , traži se jedino da ta ploha nema singularnosti .
Nadalje,
pretpostavlja se da se vektor normale
n
^
{\displaystyle {\hat {n}}}
ne mijenja dok se element plohe smanjuje k nuli.
Rotor je, kao i Divergencija , također invarijanta vektorskog
polja.
Shematski prikaz uz definiciju rotacije vektorskoga polja
Kako bismo izveli izraz za rotor u kartezijevu sustavu , napravimo integraciju po rubu
pravokutnika paralelnog s
x
O
y
{\displaystyle xOy}
- ravinom (
n
^
=
z
^
{\displaystyle {\hat {n}}={\hat {z}}}
), kao na sl.
∮
W
→
d
S
→
=
∫
C
1
W
→
d
S
→
+
∫
C
2
W
→
d
S
→
+
∫
C
3
W
→
d
S
→
+
∫
C
4
W
→
d
S
→
=
{\displaystyle \oint {\overrightarrow {W}}d{\vec {S}}=\int \limits _{C_{1}}{\overrightarrow {W}}d{\vec {S}}+\int \limits _{C_{2}}{\overrightarrow {W}}d{\vec {S}}+\int \limits _{C_{3}}{\overrightarrow {W}}d{\vec {S}}+\int \limits _{C_{4}}{\overrightarrow {W}}d{\vec {S}}=}
=
∫
C
1
W
x
(
x
,
y
0
,
z
0
)
d
x
+
∫
C
2
W
y
(
x
0
+
Δ
x
,
y
,
z
0
)
d
y
−
{\displaystyle =\int \limits _{C_{1}}W_{x}(x,y_{0},z_{0})dx+\int \limits _{C_{2}}W_{y}(x_{0}+\Delta x,y,z_{0})dy-}
−
∫
C
3
W
x
(
x
,
y
0
+
Δ
y
,
z
0
)
d
x
−
∫
C
4
W
y
(
x
0
,
y
,
z
0
)
d
y
=
{\displaystyle -\int \limits _{C_{3}}W_{x}(x,y_{0}+\Delta y,z_{0})dx-\int \limits _{C_{4}}W_{y}(x_{0},y,z_{0})dy=}
=
∫
[
W
x
(
x
,
y
0
,
z
0
)
−
W
x
(
x
,
y
0
+
Δ
y
,
z
0
)
]
d
x
+
{\displaystyle =\int {\Bigl [}W_{x}(x,y_{0},z_{0})-W_{x}(x,y_{0}+\Delta y,z_{0}){\Bigr ]}dx+}
+
∫
[
W
y
(
x
0
+
Δ
x
,
y
,
z
0
)
−
W
y
(
x
0
,
y
,
z
0
)
]
d
y
=
{\displaystyle +\int {\Bigl [}W_{y}(x_{0}+\Delta x,y,z_{0})-W_{y}(x_{0},y,z_{0}){\Bigr ]}dy=}
=
∂
W
y
∂
x
⋅
Δ
x
Δ
y
−
∂
W
x
∂
y
⋅
Δ
x
Δ
y
=
{\displaystyle ={\frac {\partial W_{y}}{\partial x}}\cdot \Delta x\Delta y-{\frac {\partial W_{x}}{\partial y}}\cdot \Delta x\Delta y=}
=
Δ
S
⋅
(
∂
W
y
∂
x
−
∂
W
x
∂
y
)
.
{\displaystyle =\Delta S\cdot {\Bigl (}{\frac {\partial W_{y}}{\partial x}}-{\frac {\partial W_{x}}{\partial y}}{\Bigr )}.}
Uvršatavanjem u
definiciju rotacije, te potpunom analogijom, imamo:
z
^
⋅
rot
W
→
=
lim
Δ
S
→
0
∮
W
→
d
S
→
Δ
S
=
lim
Δ
S
→
0
(
∂
W
y
∂
x
−
∂
W
x
∂
y
)
Δ
S
Δ
S
=
(
∂
W
y
∂
x
−
∂
W
x
∂
y
)
=
(
rot
W
→
)
z
.
{\displaystyle {\hat {z}}\cdot {\mbox{rot}}{\overrightarrow {W}}=\lim _{\Delta S\rightarrow 0}{\frac {\oint {\overrightarrow {W}}d{\vec {S}}}{\Delta S}}=\lim _{\Delta S\rightarrow 0}{\frac {{\Bigl (}{\frac {\partial W_{y}}{\partial x}}-{\frac {\partial W_{x}}{\partial y}}{\Bigr )}\Delta S}{\Delta S}}={\Bigl (}{\frac {\partial W_{y}}{\partial x}}-{\frac {\partial W_{x}}{\partial y}}{\Bigr )}=({\mbox{rot}}{\overrightarrow {W}})_{z}.}
(
rot
W
→
)
x
=
(
∂
W
z
∂
y
−
∂
W
y
∂
z
)
{\displaystyle ({\mbox{rot}}{\overrightarrow {W}})_{x}={\Bigl (}{\frac {\partial W_{z}}{\partial y}}-{\frac {\partial W_{y}}{\partial z}}{\Bigr )}}
(
rot
W
→
)
y
=
(
∂
W
x
∂
z
−
∂
W
z
∂
x
)
{\displaystyle ({\mbox{rot}}{\overrightarrow {W}})_{y}={\Bigl (}{\frac {\partial W_{x}}{\partial z}}-{\frac {\partial W_{z}}{\partial x}}{\Bigr )}}
(
rot
W
→
)
z
=
(
∂
W
y
∂
x
−
∂
W
x
∂
y
)
{\displaystyle ({\mbox{rot}}{\overrightarrow {W}})_{z}={\Bigl (}{\frac {\partial W_{y}}{\partial x}}-{\frac {\partial W_{x}}{\partial y}}{\Bigr )}}
rot
W
→
=
x
^
(
∂
W
z
∂
y
−
∂
W
y
∂
z
)
+
y
^
(
∂
W
x
∂
z
−
∂
W
z
∂
x
)
+
z
^
(
∂
W
y
∂
x
−
∂
W
x
∂
y
)
.
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}={\hat {x}}{\Bigl (}{\frac {\partial W_{z}}{\partial y}}-{\frac {\partial W_{y}}{\partial z}}{\Bigr )}+{\hat {y}}{\Bigl (}{\frac {\partial W_{x}}{\partial z}}-{\frac {\partial W_{z}}{\partial x}}{\Bigr )}+{\hat {z}}{\Bigl (}{\frac {\partial W_{y}}{\partial x}}-{\frac {\partial W_{x}}{\partial y}}{\Bigr )}.}
Očito u danoj
fomuli možemo prepoznati simbolički zapisanu determinantu :
rot
W
→
=
|
x
^
y
^
z
^
∂
∂
x
∂
∂
y
∂
∂
z
W
x
W
y
W
z
|
.
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}=\left|{\begin{array}{ccc}\displaystyle {\hat {x}}&\displaystyle {\hat {y}}&\displaystyle {\hat {z}}\\\displaystyle {\frac {\partial }{\partial x}}&\displaystyle {\frac {\partial }{\partial y}}&\displaystyle {\frac {\partial }{\partial z}}\\\displaystyle {W_{x}}&\displaystyle {W_{y}}&\displaystyle {W_{z}}\end{array}}\right|.}
Nadalje, očito je
rot
W
→
=
(
x
^
∂
∂
x
+
y
^
∂
∂
y
+
z
^
∂
∂
z
)
×
(
x
^
W
x
+
y
^
W
y
+
z
^
W
z
)
=
∇
→
×
W
→
,
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}={\Bigl (}{\hat {x}}{\frac {\partial }{\partial x}}+{\hat {y}}{\frac {\partial }{\partial y}}+{\hat {z}}{\frac {\partial }{\partial z}}{\Bigr )}\times ({\hat {x}}W_{x}+{\hat {y}}W_{y}+{\hat {z}}W_{z})={\vec {\nabla }}\times {\overrightarrow {W}},}
pa
rot
W
→
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}}
često označavamo s
∇
→
×
W
→
{\displaystyle {\vec {\nabla }}\times {\overrightarrow {W}}}
, gdje je
∇
→
{\displaystyle {\vec {\nabla }}}
Hamiltonov operator.
Za rotaciju vrijedi Stokesov teorem
∫
S
rot
W
→
⋅
d
A
→
=
∫
C
W
→
⋅
d
S
→
.
{\displaystyle \int \limits _{S}{\mbox{rot}}{\overrightarrow {W}}\cdot d{\vec {A}}=\int \limits _{C}{\overrightarrow {W}}\cdot d{\vec {S}}.}
|
(
rot
W
→
)
ρ
|
=
1
ρ
∂
W
z
∂
φ
−
∂
W
φ
∂
z
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{\rho }|={\frac {1}{\rho }}{\frac {\partial W_{z}}{\partial \varphi }}-{\frac {\partial W_{\varphi }}{\partial z}}}
|
(
rot
W
→
)
φ
|
=
∂
W
ρ
∂
z
−
∂
W
z
∂
ρ
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{\varphi }|={\frac {\partial W_{\rho }}{\partial z}}-{\frac {\partial W_{z}}{\partial \rho }}}
|
(
rot
W
→
)
z
|
=
1
ρ
∂
∂
ρ
(
ρ
W
φ
)
−
1
ρ
∂
W
ρ
∂
φ
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{z}|={\frac {1}{\rho }}{\frac {\partial }{\partial \rho }}(\rho W_{\varphi })-{\frac {1}{\rho }}{\frac {\partial W_{\rho }}{\partial \varphi }}}
rot
W
→
=
[
1
ρ
∂
W
z
∂
φ
−
∂
W
φ
∂
z
]
ρ
^
+
[
∂
W
ρ
∂
z
−
∂
W
z
∂
ρ
]
φ
^
+
[
1
ρ
∂
∂
ρ
(
ρ
W
φ
)
−
1
ρ
∂
W
ρ
∂
φ
]
z
^
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}={\biggl [}{\frac {1}{\rho }}{\frac {\partial W_{z}}{\partial \varphi }}-{\frac {\partial W_{\varphi }}{\partial z}}{\biggr ]}{\hat {\rho }}+{\biggl [}{\frac {\partial W_{\rho }}{\partial z}}-{\frac {\partial W_{z}}{\partial \rho }}{\biggr ]}{\hat {\varphi }}+{\biggl [}{\frac {1}{\rho }}{\frac {\partial }{\partial \rho }}(\rho W_{\varphi })-{\frac {1}{\rho }}{\frac {\partial W_{\rho }}{\partial \varphi }}{\biggr ]}{\hat {z}}}
|
(
rot
W
→
)
r
|
=
1
r
sin
ϑ
∂
∂
ϑ
(
W
φ
sin
ϑ
)
−
1
r
sin
ϑ
∂
W
ϑ
∂
φ
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{r}|={\frac {1}{r\sin \vartheta }}{\frac {\partial }{\partial \vartheta }}(W_{\varphi }\sin \vartheta )-{\frac {1}{r\sin \vartheta }}{\frac {\partial W_{\vartheta }}{\partial \varphi }}}
|
(
rot
W
→
)
ϑ
|
=
1
r
sin
ϑ
∂
W
r
∂
φ
−
1
r
∂
∂
r
(
r
W
φ
)
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{\vartheta }|={\frac {1}{r\sin \vartheta }}{\frac {\partial W_{r}}{\partial \varphi }}-{\frac {1}{r}}{\frac {\partial }{\partial r}}(rW_{\varphi })}
|
(
rot
W
→
)
φ
|
=
1
r
∂
∂
r
(
r
W
ϑ
)
−
1
r
∂
W
r
∂
ϑ
{\displaystyle |({\mbox{rot}}{\overrightarrow {W}})_{\varphi }|={\frac {1}{r}}{\frac {\partial }{\partial r}}(rW_{\vartheta })-{\frac {1}{r}}{\frac {\partial W_{r}}{\partial \vartheta }}}
rot
W
→
=
[
1
r
sin
ϑ
∂
∂
ϑ
(
W
φ
sin
ϑ
)
−
1
r
sin
ϑ
∂
W
ϑ
∂
φ
]
r
^
+
[
1
r
sin
ϑ
∂
W
r
∂
φ
−
1
r
∂
∂
r
(
r
W
φ
)
]
ϑ
^
+
[
1
r
∂
∂
r
(
r
W
ϑ
)
−
1
r
∂
W
r
∂
ϑ
]
φ
^
.
{\displaystyle {\mbox{rot}}{\overrightarrow {W}}={\biggl [}{\frac {1}{r\sin \vartheta }}{\frac {\partial }{\partial \vartheta }}(W_{\varphi }\sin \vartheta )-{\frac {1}{r\sin \vartheta }}{\frac {\partial W_{\vartheta }}{\partial \varphi }}{\biggr ]}{\hat {r}}+{\biggl [}{\frac {1}{r\sin \vartheta }}{\frac {\partial W_{r}}{\partial \varphi }}-{\frac {1}{r}}{\frac {\partial }{\partial r}}(rW_{\varphi }){\biggr ]}{\hat {\vartheta }}+{\biggl [}{\frac {1}{r}}{\frac {\partial }{\partial r}}(rW_{\vartheta })-{\frac {1}{r}}{\frac {\partial W_{r}}{\partial \vartheta }}{\biggr ]}{\hat {\varphi }}.}
Neka su dana vektorska polja
u
→
{\displaystyle {\vec {u}}}
i
v
→
{\displaystyle {\vec {v}}}
, skalar
U
{\displaystyle U}
,
skalarna funkcija
f
(
U
)
{\displaystyle f(U)}
i radij-vektor
r
→
{\displaystyle {\vec {r}}}
. Tada vrijedi:
rot
(
u
→
+
v
→
)
=
rot
u
→
+
rot
v
→
{\displaystyle {\textrm {rot}}({\vec {u}}+{\vec {v}})={\textrm {rot}}{\vec {u}}+{\textrm {rot}}{\vec {v}}}
rot
(
U
⋅
v
→
)
=
U
⋅
rot
v
→
−
v
→
×
grad
U
{\displaystyle {\textrm {rot}}(U\cdot {\vec {v}})=U\cdot {\textrm {rot}}{\vec {v}}-{\vec {v}}\times {\mbox{grad}}U}
rot
[
f
(
U
)
⋅
v
→
]
=
f
(
U
)
⋅
rot
v
→
−
v
→
×
f
U
′
(
U
)
grad
U
{\displaystyle {\textrm {rot}}[f(U)\cdot {\vec {v}}]=f(U)\cdot {\textrm {rot}}{\vec {v}}-{\vec {v}}\times f_{U}^{'}(U){\textrm {grad}}U}
rot
r
→
=
0
{\displaystyle {\textrm {rot}}{\vec {r}}=0}
rot
(
u
→
×
v
→
)
=
u
→
div
v
→
−
v
→
div
u
→
+
(
v
→
⋅
∇
→
)
u
→
−
(
u
→
⋅
∇
→
)
v
→
{\displaystyle {\mbox{rot}}({\vec {u}}\times {\vec {v}})={\vec {u}}{\mbox{div}}{\vec {v}}-{\vec {v}}{\mbox{div}}{\vec {u}}+({\vec {v}}\cdot {\vec {\nabla }}){\vec {u}}-({\vec {u}}\cdot {\vec {\nabla }}){\vec {v}}}
grad
(
u
→
⋅
v
→
)
=
v
→
×
rot
u
→
+
u
→
×
rot
v
→
+
(
v
→
⋅
∇
→
)
u
→
+
(
u
→
⋅
∇
→
)
v
→
{\displaystyle {\mbox{grad}}({\vec {u}}\cdot {\vec {v}})={\vec {v}}\times {\mbox{rot}}{\vec {u}}+{\vec {u}}\times {\mbox{rot}}{\vec {v}}+({\vec {v}}\cdot {\vec {\nabla }}){\vec {u}}+({\vec {u}}\cdot {\vec {\nabla }}){\vec {v}}}
div
(
u
→
×
v
→
)
=
v
→
rot
u
→
−
u
→
rot
v
→
.
{\displaystyle {\mbox{div}}({\vec {u}}\times {\vec {v}})={\vec {v}}{\mbox{rot}}{\vec {u}}-{\vec {u}}{\mbox{rot}}{\vec {v}}.}
Rotor elektrostaskog polja točkastog naboja ,
E
→
=
1
4
π
ε
0
q
r
3
r
→
{\displaystyle {\overrightarrow {E}}={\frac {1}{4\pi \varepsilon _{0}}}{\frac {q}{r^{3}}}{\vec {r}}}
:
rot
E
→
=
rot
(
1
4
π
ε
0
q
r
3
r
→
)
=
(
2.
)
q
4
π
ε
0
r
3
rot
r
→
−
r
→
×
grad
q
4
π
ε
0
r
3
=
−
3
q
4
π
ε
0
r
4
r
→
r
×
r
→
=
[
r
→
×
r
→
=
0
]
=
0.
{\displaystyle {\mbox{rot}}{\overrightarrow {E}}={\mbox{rot}}{\Bigl (}{\frac {1}{4\pi \varepsilon _{0}}}{\frac {q}{r^{3}}}{\vec {r}}{\Bigr )}{\stackrel {(2.)}{=}}{\frac {q}{4\pi \varepsilon _{0}r^{3}}}{\mbox{rot}}{\vec {r}}-{\vec {r}}\times {\mbox{grad}}{\frac {q}{4\pi \varepsilon _{0}r^{3}}}=-{\frac {3q}{4\pi \varepsilon _{0}r^{4}}}{\frac {\vec {r}}{r}}\times {\vec {r}}=[{\vec {r}}\times {\vec {r}}=0]=0.}
Rotor vektorskog polja obodne kružne brzine ,
v
→
=
ω
→
×
r
→
{\displaystyle {\vec {v}}={\vec {\omega }}\times {\vec {r}}}
(v. sl.).
Shematski prikaz uz rotaciju polja obodne brzine
v
→
=
ω
→
×
r
→
=
|
x
^
y
^
z
^
ω
x
ω
y
ω
z
x
y
z
|
=
x
^
(
z
ω
y
−
y
ω
z
)
+
y
^
(
x
ω
z
−
z
ω
x
)
+
z
^
(
y
ω
x
−
x
ω
y
)
;
{\displaystyle {\vec {v}}={\vec {\omega }}\times {\vec {r}}=\left|{\begin{array}{ccc}{\hat {x}}&{\hat {y}}&{\hat {z}}\\\omega _{x}&\omega _{y}&\omega _{z}\\x&y&z\end{array}}\right|={\hat {x}}(z\omega _{y}-y\omega _{z})+{\hat {y}}(x\omega _{z}-z\omega _{x})+{\hat {z}}(y\omega _{x}-x\omega _{y});}
rot
v
→
=
|
x
^
y
^
z
^
∂
∂
x
∂
∂
y
∂
∂
z
(
z
ω
y
−
y
ω
z
)
(
x
ω
z
−
z
ω
x
)
(
y
ω
x
−
x
ω
y
)
|
=
2
ω
x
x
^
+
2
ω
y
y
^
+
2
ω
z
z
^
=
2
ω
→
.
{\displaystyle {\mbox{rot}}{\vec {v}}=\left|{\begin{array}{ccc}{\hat {x}}&{\hat {y}}&{\hat {z}}\\{\frac {\partial }{\partial x}}&{\frac {\partial }{\partial y}}&{\frac {\partial }{\partial z}}\\(z\omega _{y}-y\omega _{z})&(x\omega _{z}-z\omega _{x})&(y\omega _{x}-x\omega _{y})\end{array}}\right|=2\omega _{x}{\hat {x}}+2\omega _{y}{\hat {y}}+2\omega _{z}{\hat {z}}=2{\vec {\omega }}.}
Odatle se lako mogu iščitati komponente kutne brzine :
ω
x
=
1
2
(
∂
v
z
∂
y
−
∂
v
y
∂
z
)
{\displaystyle \omega _{x}={\frac {1}{2}}{\Bigl (}{\frac {\partial v_{z}}{\partial y}}-{\frac {\partial v_{y}}{\partial z}}{\Bigr )}}
ω
y
=
1
2
(
∂
v
x
∂
z
−
∂
v
z
∂
x
)
{\displaystyle \omega _{y}={\frac {1}{2}}{\Bigl (}{\frac {\partial v_{x}}{\partial z}}-{\frac {\partial v_{z}}{\partial x}}{\Bigr )}}
ω
z
=
1
2
(
∂
v
y
∂
x
−
∂
v
x
∂
y
)
.
{\displaystyle \omega _{z}={\frac {1}{2}}{\Bigl (}{\frac {\partial v_{y}}{\partial x}}-{\frac {\partial v_{x}}{\partial y}}{\Bigr )}.}
Na ovom primjeru primijetimo: vektor brzine
v
→
{\displaystyle {\vec {v}}}
je polarni vektor , a vektor
rot
v
→
{\displaystyle {\mbox{rot}}{\vec {v}}}
je aksijalni vektor . Međutim, to
vrijedi i
općenito: rotor polarnog vektora je aksijalni vektor, a rotor aksijalnog vektora je polarni vektor.