Seafloor spreading
Seafloor spreading is a geologic process in which tectonic plates—large slabs of Earth's lithosphere—split apart from each other. Seafloor spreading and other tectonic activity processes are the result of mantle convection. Mantle convection is the slow, churning motion of Earth’s mantle. Convection currents carry heat from the lower mantle and core to the lithosphere. Convection currents also “recycle” lithospheric materials back to the mantle.
Seafloor spreading occurs at divergent plate boundaries. As tectonic plates slowly move away from each other, heat from the mantle’s convection currents makes the crust more plastic and less dense. The less-dense material rises, often forming a mountain or elevated area of the seafloor. Eventually, the crust cracks. Hot magma fueled by mantle convection bubbles up to fill these fractures and spills onto the crust. This bubbled-up magma is cooled by frigid seawater to form igneous rock. This rock (basalt) becomes a new part of Earth’s crust.
Mid-Ocean Ridges
Seafloor spreading occurs along mid-ocean ridges—large mountain ranges rising from the ocean floor. The Mid-Atlantic Ridge, for instance, separates the North American plate from the Eurasian plate, and the South American plate from the African plate.
The East Pacific Rise is a mid-ocean ridge that runs through the eastern Pacific Ocean and separates the Pacific plate from the North American plate, the Cocos plate, the Nazca plate, and the Antarctic plate.
The Southeast Indian Ridge marks where the southern Indo-Australian plate forms a divergent boundary with the Antarctic plate.
Seafloor spreading is not consistent at all mid-ocean ridges. Slowly spreading ridges are the sites of tall, narrow underwater cliffs and mountains. Rapidly spreading ridges have a much more gentle slopes. The Mid-Atlantic Ridge, for instance, is a slow spreading center. It spreads 2-5 centimeters (.8-2 inches) every year and forms an ocean trench about the size of the Grand Canyon. The East Pacific Rise, on the other hand, is a fast spreading center. It spreads about 6-16 centimeters (3-6 inches) every year. There is not an ocean trench at the East Pacific Rise, because the seafloor spreading is too rapid for one to develop!
The newest, thinnest crust on Earth is located near the center of mid-ocean ridges—the actual site of seafloor spreading. The age, density, and thickness of oceanic crust increases with distance from the mid-ocean ridge.
Geomagnetic Reversals
The magnetism of mid-ocean ridges helped scientists first identify the process of seafloor spreading in the early 20th century. Basalt, the once-molten rock that makes up most new oceanic crust, is a fairly magnetic substance, and scientists began using magnetometers to measure the magnetism of the ocean floor in the 1950s. What they discovered was that the magnetism of the ocean floor around mid-ocean ridges was divided into matching “stripes” on either side of the ridge. The specific magnetism of basalt rock is determined by the Earth’s magnetic field when the magma is cooling. Scientists determined that the same process formed the perfectly symmetrical stripes on both side of a mid-ocean ridge. The continual process of seafloor spreading separated the stripes in an orderly pattern.
Geographic Features
Oceanic crust slowly moves away from mid-ocean ridges and sites of seafloor spreading. As it moves, it becomes cooler, more dense, and more thick. Eventually, older oceanic crust encounters a tectonic boundary with continental crust. In some cases, oceanic crust encounters an active plate margin. An active plate margin is an actual plate boundary, where oceanic crust and continental crust crash into each other. Active plate margins are often the site of earthquakes and volcanoes. Oceanic crust created by seafloor spreading in the East Pacific Rise, for instance, may become part of the Ring of Fire, the horseshoe-shaped pattern of volcanoes and earthquake zones around the Pacific ocean basin.
In other cases, oceanic crust encounters a passive plate margin. Passive margins are not plate boundaries, but areas where a single tectonic plate transitions from oceanic lithosphere to continental lithosphere. Passive margins are not sites of faults or subduction zones. Thick layers of sediment overlay the transitional crust of a passive margin. The oceanic crust of the Mid-Atlantic Ridge, for instance, will either become part of the passive margin on the North American plate (on the east coast of North America) or the Eurasian plate (on the west coast of Europe).
New geographic features can be created through seafloor spreading. The Red Sea, for example, was created as the African plate and the Arabian plate tore away from each other. Today, only the Sinai Peninsula connects the Middle East (Asia) with North Africa. Eventually, geologists predict, seafloor spreading will completely separate the two continents—and join the Red and Mediterranean Seas.
Mid-ocean ridges and seafloor spreading can also influence sea levels. As oceanic crust moves away from the shallow mid-ocean ridges, it cools and sinks as it becomes more dense. This increases the volume of the ocean basin and decreases the sea level. For instance, a mid-ocean ridge system in Panthalassa—an ancient ocean that surrounded the supercontinent Pangaea—contributed to shallower oceans and higher sea levels in the Paleozoic era. Panthalassa was an early form of the Pacific Ocean, which today experiences less seafloor spreading and has a much less extensive mid-ocean ridge system. This helps explain why sea levels have fallen dramatically over the past 80 million years.
Seafloor spreading disproves an early part of the theory of continental drift. Supporters of continental drift originally theorized that the continents moved (drifted) through unmoving oceans. Seafloor spreading proves that the ocean itself is a site of tectonic activity.
Keeping Earth in Shape
Seafloor spreading is just one part of plate tectonics. Subduction is another. Subduction happens where tectonic plates crash into each other instead of spreading apart. At subduction zones, the edge of the denser plate subducts, or slides, beneath the less-dense one. The denser lithospheric material then melts back into the Earth's mantle. Seafloor spreading creates new crust. Subduction destroys old crust. The two forces roughly balance each other, so the shape and diameter of the Earth remain constant.
Seafloor spreading happens at the bottom of an ocean as tectonic plates move apart. The seafloor moves and carries continents with it. At ridges in the middle of oceans, new oceanic crust is created. The motivating force for seafloor spreading ridges is tectonic plate pull rather than magma pressure, although there is typically significant magma activity at spreading ridges.[1]
At the Mid-Atlantic Ridge (and other places), material from the upper mantle rises through the faults between oceanic plates. It forms new crust as the plates move away from each other. The new crust then slowly moves away from the ridge. It is a place of earthquakes and volcanoes. Seafloor spreading helps explain continental drift in plate tectonics. At oceanic trenches, seafloor crust slides down and under continental crust.
Earlier theories (e.g. by Alfred Wegener) of continental drift were that continents 'plowed' through the ocean. The modern idea is that the ocean floor itself moves and carries the continents with it as it expands from a mid-ocean ridge. Today, it is accepted. The phenomenon is caused by convection in the weak upper mantle, or asthenosphere.[2][3]
Additionally spreading rates determine if the ridge is a fast, intermediate, or slow. As a general rule, fast ridges see spreading rate of more than 9 cm/year. Intermediate ridges have a spreading rate of 4-9 cm/year while slow spreading ridges have a rate less than 4 cm/year. [1]
Mid-ocean ridge
[change | change source]A mid-ocean ridge is an underwater mountain system. This consists of mountain chains, with a rift valley running along its spine, formed by plate tectonics. A mid-ocean ridge marks the boundary between two tectonic plates which are moving apart. A mid ocean ridge is made by a divergent boundary.
The mid-ocean ridges of the world are connected and form a single global mid-oceanic ridge system that is part of every ocean. The mid-oceanic ridge system is the longest mountain range in the world. The continuous mountain range is 65,000 km (40,400 mi) long. It is several times longer than the Andes, the longest continental mountain range. The total length of the oceanic ridge system is 80,000 km (49,700 mi) long.[4]
How it works
[change | change source]Mid-ocean ridges are geologically active, with new magma constantly emerging onto the ocean floor and into the crust at and near rifts along the ridge axes. The crystallized magma forms new crust of basalt and gabbro.
The rocks making up the crust below the seafloor are youngest at the axis of the ridge and age with increasing distance from that axis. New magma of basalt composition emerges at and near the axis because of decompression melting in the underlying Earth's mantle.[5]
The oceanic crust is made up of rocks much younger than the Earth itself: oceanic crust in the ocean basins is everywhere less than 200 million years old. The crust is in a constant state of 'renewal' at the ocean ridges. Moving away from the mid-ocean ridge, ocean depth progressively increases; the greatest depths are in ocean trenches. As the oceanic crust moves away from the ridge axis, the peridotite in the underlying mantle cools and becomes more rigid. The crust and the relatively rigid peridotite below it make up the oceanic lithosphere.
Slow spreading ridges like the Mid-Atlantic Ridge have large, wide rift valleys, sometimes as big as 10-20 km wide and very rugged terrain at the ridge crest. By contrast, fast spreading ridges like the East Pacific Rise are narrow, sharp incisions surrounded by generally flat topography that slopes away from the ridge over many hundreds of miles.
References
[change | change source]- ↑ 1.0 1.1 Tan, Yen Joe, et al. "Dynamics of a seafloor-spreading episode at the East Pacific Rise." Nature 540.7632 (2016): 261-265.
- ↑ Hess, H.H. (1962). "History of ocean basins" (PDF). Petrologic studies: a volume to honor A.F. Buddington. Boulder, CO: Geological Society of America. pp. 599–620. Retrieved 8 September 2010.
- ↑ Elsasser, Walter M. (1971). "Sea-floor spreading as thermal convection". Journal of Geophysical Research. 76 (5): 1101–1112. Bibcode:1971JGR....76.1101E. doi:10.1029/JB076i005p01101.
- ↑ Cambridge Encyclopedia 2005 - Oceanic ridges
- ↑ Marjorie Wilson. (1993). Igneous petrogenesis. London: Chapman & Hall. ISBN 9780412533105.