Пређи на садржај

Oksidacioni agens

С Википедије, слободне енциклопедије
(преусмерено са Oksidans)
Simbol za hemijske hazarde Evropske unije za oksidacione agense
Natpis za oksidacione agense

Oksidacioni agens (oksidans, oksidizer) se može definisati kao supstanca koja uklanja elektrone sa nekog drugog reaktanta u redoks hemijskoj reakciji.[1] Oksidacioni agens se redukuje preuzimanjem elektrona na sebe, dok se reduktans oksiduje dajući elektrone. Kiseonik je dobar primer oksidacionog agensa među mnogobrojnim drugim jedinjenjima.[2][3] Уобичајени оксиданти су кисеоник, водоник пероксид и халогени.

Oksidaciono sredstvo je hemijska vrsta koja prolazi kroz hemijsku reakciju u kojoj dobija jedan ili više elektrona. U tom smislu, to je jedna komponenta u oksidaciono-redukcionoj (redoks) reakciji. Oksidaciono sredstvo je isto tako hemijska vrsta koja prenosi elektronegativne atome, obično kiseonik, na supstrat. Sagorevanje, mnogi eksplozivi i organske redoks reakcije obuhvataju reakcije prenosa atoma.

Elektronski akceptori

[уреди | уреди извор]
Tetracijanohinodimetan je organski elektronski-akceptor.

Elektronski akceptori[4] učestvuju u reakcijama prenosa elektrona.[5][6][7] U tom kontekstu, oksidaciono sredstvo se naziva akceptor elektrona, a redukciono sredstvo donator elektrona. Klasično oksidaciono sredstvo je ferocenijum jon Fe(C
5
H
5
)+
2
, koji prihvata elektron da formira Fe(C5H5)2.[8][9][10] Jedan od najjačih akceptora na tržištu je magično plavo,[11] radikalni katjon izveden iz N(C6H4-4-Br)3.[8]

Dostupne su opsežne tabele za rangiranje svojstava prihvatanja elektrona za različite reagense (redoks potencijali), pogledajte standardni potencijal elektroda.[12][13][14]

Reagensi atomskog transfera

[уреди | уреди извор]

U uobičajenijoj upotrebi, oksidaciono sredstvo prenosi atome kiseonika na supstrat. U tom kontekstu, oksidaciono sredstvo se može nazvati oksigenacionim reagensom ili agensom transfera atoma kiseonika (OAT).[15] Primeri uključuju MnO
4
(permanganat), CrO2−
4
(hromat), OsO4 (osmijum tetroksid), a posebno ClO
4
(perhlorat). Uočite da su sve ove vrste oksidi.

U nekim slučajevima, ovi oksidi mogu poslužiti i kao akceptori elektrona, što je ilustrovano konverzijom MnO
4
u MnO2−
4
, manganat.

Definicija opasnih materijala

[уреди | уреди извор]

Po definiciji oksidacionog sredstva kao opasnog tereta to je supstanca koja može izazvati ili doprineti sagorevanju drugog materijala.[16] Prema ovoj definiciji, neki materijali koje analitički hemičari klasifikuju kao oksidancione agense nisu klasifikovani kao takvi u smislu opasnih materijala. Primer je kalijum dihromat, koji ne ispunjava kriterije oksidacionih agenasa kao opasnih materija.

Ministarstvo transporta SAD specifično definiše oksidacione agense. Postoje dve definicije oksidacionih agenasa prema DOT propisima. One su Klasa 5; Odeljak 5.1(a)1 i Klasa 5; Odeljak 5.1(a)2. Odeljak 5.1 „označava materijal koji generalno otpuštanjem kiseonika može izazvati ili pojačati sagorevanje drugih materijala.” Odeljak 5.(a)1 DOT koda primenjuje se na čvrste oksidante „ako je, kada se testira u skladu sa Priručnikom za ispitivanja i kriterijume UN (IBR, vidi § 171.7 ovog potpoglavlja), njegovo srednje vreme gorenja manje ili jednako od vremena sagorevanja mešavine 3:7 kalijum bromata/celuloze.” 5.1(a)2 DOT koda primenjuje se na tečne oksidanse „ako se, kada se testira u skladu sa UN Priručnikom za ispitivanja i kriterijume, spontano zapali ili ako je njegovo srednje vreme za porast pritiska sa 690 kPa na 2070 kPa manje od vremena mešavine 1:1 azotne kiseline (65 procenata)/celuloze.”[17]

Primeri oksidacije

[уреди | уреди извор]

Formiranje gvožđe(III) oksida;

4Fe + 3O2 → 2Fe2O3

U gornjoj jednačini, gvožđe (Fe) ima oksidacioni broj 0 pre i 3+ nakon reakcije. Za kiseonik (O) početni oksidacioni broj je 0 i smanjuje se do 2−. Te promene se mogu posmatrati kao dve polureakcije, koje se istovremeno odvijaju:

  1. Polureakcija oksidacije: Fe0 → Fe3+ + 3e
  2. Polureakcija redukcije: O2 + 4e → 2 O2−

Gvožđe (Fe) je postalo oksidovano, jer je njegov oksidacioni broj povećan. Ono je redukcioni agens, jer je dalo elektrone kiseoniku (O). Kiseonik (O) je redukovan, jer je njegov oksidacioni broj umanjen. On je oksidacioni agens, jer je uzeo elektrone sa gvožđa (Fe).

Uobičajeni oksidacioni agensi i njihovi proizvodi

[уреди | уреди извор]
Agens Produkt(i)
O2 kiseonik Razni, među kojima su oksidi H2O i CO2
O3 ozon Razni, neki od njih su: ketoni, aldehidi, i H2O
F2 fluor F
Cl2 hlor Cl
Br2 brom Br
I2 jod I, I3
OCl hipohlorit Cl, H2O
ClO3 hlorat Cl, H2O
HNO3 azotna kiselina NO azot monoksid
NO2 azot dioksid
Heksavalentni hrom
CrO3 hrom trioksid
CrO42− hromat
Cr2O72− dihromat
Cr3+, H2O
MnO4 permanganat
MnO42− manganat
Mn2+ (kiseli) ili MnO2 (bazni)
H2O2, drugi peroksidi Razni, npr. oksidi i H2O
  1. ^ Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. 2005. 
  2. ^ Hudlický, Miloš (1996). Reductions in Organic Chemistry. Washington, D.C.: American Chemical Society. стр. 429. ISBN 978-0-8412-3344-7. 
  3. ^ Hudlický, Miloš (1990). Oxidations in Organic Chemistry. Washington, D.C.: American Chemical Society. стр. 456. ISBN 978-0-8412-1780-5. 
  4. ^ „electron acceptor”. The IUPAC Compendium of Chemical Terminology. IUPAC Gold Book. 2014. ISBN 978-0-9678550-9-7. doi:10.1351/goldbook.E01976. Архивирано из оригинала 2018-05-26. г. Приступљено 21. 4. 2018. 
  5. ^ Piechota, Eric J.; Meyer, Gerald J. (2019). „Introduction to Electron Transfer: Theoretical Foundations and Pedagogical Examples”. Journal of Chemical Education. 96 (11): 2450—2466. Bibcode:2019JChEd..96.2450P. S2CID 208754569. doi:10.1021/acs.jchemed.9b00489. 
  6. ^ Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4.
  7. ^ Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.
  8. ^ а б N. G. Connelly; W. E. Geiger (1996). „Chemical Redox Agents for Organometallic Chemistry”. Chemical Reviews. 96 (2): 877—910. PMID 11848774. doi:10.1021/cr940053x. 
  9. ^ Nielson, Roger M.; McManis, George E.; Safford, Lance K.; Weaver, Michael J. (1989). „Solvent and electrolyte effects on the kinetics of ferrocenium-ferrocene self-exchange. A reevaluation”. J. Phys. Chem. 93 (5): 2152. doi:10.1021/j100342a086. 
  10. ^ Le Bras, J.; Jiao, H.; Meyer, W. E.; Hampel, F.; Gladysz, J. A. (2000). „Synthesis, Crystal Structure, and Reactions of the 17-Valence-Electron Rhenium Methyl Complex [(η5-C5Me5)Re(NO)(P(4-C6H4CH3)3)(CH3)]+ B(3,5-C
    6
    H
    3
    (CF
    3
    )
    2
    )
    4
    : Experimental and Computational Bonding Comparisons with 18-Electron Methyl and Methylidene Complexes”. J. Organomet. Chem. 616: 54—66. doi:10.1016/S0022-328X(00)00531-3.
     
  11. ^ Earle, Martyn J.; Vibert, Aude; Jahn, Ullrich (2011). „Tris(4-bromophenyl)aminium Hexachloroantimonate”. Encyclopedia of Reagents for Organic Synthesis. ISBN 978-0471936237. doi:10.1002/047084289X.rt397.pub2. 
  12. ^ Bard, Allen J.; Parsons, Roger; Jordan, Joseph (1985). Standard Potentials in Aqueous Solution. CRC Press. ISBN 978-0-8247-7291-8. 
  13. ^ Vanýsek, Petr (2012). „Electrochemical Series”. Ур.: Haynes, William M. Handbook of Chemistry and Physics (93rd изд.). CRC Press. стр. 5—80. ISBN 9781439880494. 
  14. ^ Vanýsek, Petr (2011). „Electrochemical Series”. Ур.: Haynes, William M. CRC Handbook of Chemistry and Physics (92nd изд.). CRC Press. стр. 5—80—9. ISBN 978-1-4398-5512-6. 
  15. ^ Smith, Michael B.; March, Jerry (2007). Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th изд.). New York: Wiley-Interscience. ISBN 0-471-72091-7. 
  16. ^ Australian Dangerous Goods Code, 6th Edition
  17. ^ 49 CFR 172.127 General Requirements for Shipments and Packagings; Subpart D

Spoljašnje veze

[уреди | уреди извор]