Kolonnrum
Ett kolonnrum är i linjär algebra alla linjärkombinationer av (även kallat spannet av) kolonnvektorerna i en matris. Om A är en m × n-matris är A:s kolonnrum ett underrum till ett m-dimensionellt vektorrum. Dimensionen av kolonnrummet kallas för matrisens rang.
Definition
[redigera | redigera wikitext]Låt A vara en matris med kolonnvektorerna . Kolonnrummet är då alla vektorer som kan skrivas som
Detta kan istället uttryckas som en matris-vektor-multiplikation:
med andra ord är kolonnrummet samma sak som värderummet till den linjära avbildning som matrisen representerar.
Exempel
[redigera | redigera wikitext]Antag att
Då leder multiplikationen av A med kolonnvektorn till vektorn
där den andra koordinaten kan varieras fritt, men den första koordinaten måste vara lika med den tredje, vilket beskriver ett plan med ekvationen , som alltså är kolonnrummet.
Bas för kolonnrum
[redigera | redigera wikitext]Kolonnvektorerna i matrisen A spänner upp kolonnrummet, men bildar inte nödvändigtvis en bas då kolonnerna kan vara linjärt beroende. Gausselimination kan användas för att överföra matrisen till en trappstegsmatris, vilket gör det möjligt att identifiera de kolonner som är beroende.
|