View on TensorFlow.org | Run in Google Colab | View source on GitHub | Download notebook |
This guide demonstrates how to migrate embedding training on on TPUs from TensorFlow 1's embedding_column
API with TPUEstimator
to TensorFlow 2's TPUEmbedding
layer API with TPUStrategy
.
Embeddings are (large) matrices. They are lookup tables that map from a sparse feature space to dense vectors. Embeddings provide efficient and dense representations, capturing complex similarities and relationships between features.
TensorFlow includes specialized support for training embeddings on TPUs. This TPU-specific embedding support allows you to train embeddings that are larger than the memory of a single TPU device, and to use sparse and ragged inputs on TPUs.
- In TensorFlow 1,
tf.compat.v1.estimator.tpu.TPUEstimator
is a high level API that encapsulates training, evaluation, prediction, and exporting for serving with TPUs. It has special support fortf.compat.v1.tpu.experimental.embedding_column
. - To implement this in TensorFlow 2, use the TensorFlow Recommenders'
tfrs.layers.embedding.TPUEmbedding
layer. For training and evaluation, use a TPU distribution strategy—tf.distribute.TPUStrategy
—which is compatible with the Keras APIs for, for example, model building (tf.keras.Model
), optimizers (tf.keras.optimizers.Optimizer
), and training withModel.fit
or a custom training loop withtf.function
andtf.GradientTape
.
For additional information, refer to the tfrs.layers.embedding.TPUEmbedding
layer's API documentation, as well as the tf.tpu.experimental.embedding.TableConfig
and tf.tpu.experimental.embedding.FeatureConfig
docs for additional information. For an overview of tf.distribute.TPUStrategy
, check out the Distributed training guide and the Use TPUs guide. If you're migrating from TPUEstimator
to TPUStrategy
, check out the TPU migration guide.
Setup
Start by installing TensorFlow Recommenders and importing some necessary packages:
pip install tensorflow-recommenders
import tensorflow as tf
import tensorflow.compat.v1 as tf1
# TPUEmbedding layer is not part of TensorFlow.
import tensorflow_recommenders as tfrs
/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.8) or chardet (2.3.0)/charset_normalizer (2.0.12) doesn't match a supported version! RequestsDependencyWarning)
And prepare a simple dataset for demonstration purposes:
features = [[1., 1.5]]
embedding_features_indices = [[0, 0], [0, 1]]
embedding_features_values = [0, 5]
labels = [[0.3]]
eval_features = [[4., 4.5]]
eval_embedding_features_indices = [[0, 0], [0, 1]]
eval_embedding_features_values = [4, 3]
eval_labels = [[0.8]]
TensorFlow 1: Train embeddings on TPUs with TPUEstimator
In TensorFlow 1, you set up TPU embeddings using the tf.compat.v1.tpu.experimental.embedding_column
API and train/evaluate the model on TPUs with tf.compat.v1.estimator.tpu.TPUEstimator
.
The inputs are integers ranging from zero to the vocabulary size for the TPU embedding table. Begin with encoding the inputs to categorical ID with tf.feature_column.categorical_column_with_identity
. Use "sparse_feature"
for the key
parameter, since the input features are integer-valued, while num_buckets
is the vocabulary size for the embedding table (10
).
embedding_id_column = (
tf1.feature_column.categorical_column_with_identity(
key="sparse_feature", num_buckets=10))
Next, convert the sparse categorical inputs to a dense representation with tpu.experimental.embedding_column
, where dimension
is the width of the embedding table. It will store an embedding vector for each of the num_buckets
.
embedding_column = tf1.tpu.experimental.embedding_column(
embedding_id_column, dimension=5)
Now, define the TPU-specific embedding configuration via tf.estimator.tpu.experimental.EmbeddingConfigSpec
. You will pass it later to tf.estimator.tpu.TPUEstimator
as an embedding_config_spec
parameter.
embedding_config_spec = tf1.estimator.tpu.experimental.EmbeddingConfigSpec(
feature_columns=(embedding_column,),
optimization_parameters=(
tf1.tpu.experimental.AdagradParameters(0.05)))
Next, to use a TPUEstimator
, define:
- An input function for the training data
- An evaluation input function for the evaluation data
- A model function for instructing the
TPUEstimator
how the training op is defined with the features and labels
def _input_fn(params):
dataset = tf1.data.Dataset.from_tensor_slices((
{"dense_feature": features,
"sparse_feature": tf1.SparseTensor(
embedding_features_indices,
embedding_features_values, [1, 2])},
labels))
dataset = dataset.repeat()
return dataset.batch(params['batch_size'], drop_remainder=True)
def _eval_input_fn(params):
dataset = tf1.data.Dataset.from_tensor_slices((
{"dense_feature": eval_features,
"sparse_feature": tf1.SparseTensor(
eval_embedding_features_indices,
eval_embedding_features_values, [1, 2])},
eval_labels))
dataset = dataset.repeat()
return dataset.batch(params['batch_size'], drop_remainder=True)
def _model_fn(features, labels, mode, params):
embedding_features = tf1.keras.layers.DenseFeatures(embedding_column)(features)
concatenated_features = tf1.keras.layers.Concatenate(axis=1)(
[embedding_features, features["dense_feature"]])
logits = tf1.layers.Dense(1)(concatenated_features)
loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
optimizer = tf1.tpu.CrossShardOptimizer(optimizer)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)
With those functions defined, create a tf.distribute.cluster_resolver.TPUClusterResolver
that provides the cluster information, and a tf.compat.v1.estimator.tpu.RunConfig
object.
Along with the model function you have defined, you can now create a TPUEstimator
. Here, you will simplify the flow by skipping checkpoint savings. Then, you will specify the batch size for both training and evaluation for the TPUEstimator
.
cluster_resolver = tf1.distribute.cluster_resolver.TPUClusterResolver(tpu='')
print("All devices: ", tf1.config.list_logical_devices('TPU'))
All devices: []
tpu_config = tf1.estimator.tpu.TPUConfig(
iterations_per_loop=10,
per_host_input_for_training=tf1.estimator.tpu.InputPipelineConfig
.PER_HOST_V2)
config = tf1.estimator.tpu.RunConfig(
cluster=cluster_resolver,
save_checkpoints_steps=None,
tpu_config=tpu_config)
estimator = tf1.estimator.tpu.TPUEstimator(
model_fn=_model_fn, config=config, train_batch_size=8, eval_batch_size=8,
embedding_config_spec=embedding_config_spec)
WARNING:tensorflow:Estimator's model_fn (<function _model_fn at 0x7f168033fc80>) includes params argument, but params are not passed to Estimator. WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpxc9fm1_q INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpxc9fm1_q', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true cluster_def { job { name: "worker" tasks { key: 0 value: "10.240.1.10:8470" } } } isolate_session_state: true , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({'worker': ['10.240.1.10:8470']}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': 'grpc://10.240.1.10:8470', '_evaluation_master': 'grpc://10.240.1.10:8470', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=10, num_shards=None, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None, eval_training_input_configuration=2, experimental_host_call_every_n_steps=1, experimental_allow_per_host_v2_parallel_get_next=False, experimental_feed_hook=None), '_cluster': <tensorflow.python.distribute.cluster_resolver.tpu.tpu_cluster_resolver.TPUClusterResolver object at 0x7f16803b4a20>} INFO:tensorflow:_TPUContext: eval_on_tpu True
Call TPUEstimator.train
to begin training the model:
estimator.train(_input_fn, steps=1)
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.10:8470) for TPU system metadata. INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 6349538157198932596) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 9059152445598865227) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 3922455949451878923) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, -6084187114011162725) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, 8400191476321474241) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, 5484621084550964852) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -8416772895681308377) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, 2490716523526845408) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 7973779273400954871) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 6478654019570154047) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 7299189593611257732) WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/tpu/feature_column_v2.py:479: IdentityCategoricalColumn._num_buckets (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.10:8470) for TPU system metadata. INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 6349538157198932596) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 9059152445598865227) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 3922455949451878923) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, -6084187114011162725) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, 8400191476321474241) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, 5484621084550964852) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -8416772895681308377) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, 2490716523526845408) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 7973779273400954871) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 6478654019570154047) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 7299189593611257732) WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Bypassing TPUEstimator hook INFO:tensorflow:Done calling model_fn. INFO:tensorflow:TPU job name worker INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:758: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Prefer Variable.assign which has equivalent behavior in 2.X. INFO:tensorflow:Initialized dataset iterators in 0 seconds INFO:tensorflow:Installing graceful shutdown hook. INFO:tensorflow:Creating heartbeat manager for ['/job:worker/replica:0/task:0/device:CPU:0'] INFO:tensorflow:Configuring worker heartbeat: shutdown_mode: WAIT_FOR_COORDINATOR INFO:tensorflow:Init TPU system INFO:tensorflow:Initialized TPU in 8 seconds INFO:tensorflow:Starting infeed thread controller. INFO:tensorflow:Starting outfeed thread controller. INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed. INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed. INFO:tensorflow:Outfeed finished for iteration (0, 0) INFO:tensorflow:loss = 0.6467617, step = 1 INFO:tensorflow:Stop infeed thread controller INFO:tensorflow:Shutting down InfeedController thread. INFO:tensorflow:InfeedController received shutdown signal, stopping. INFO:tensorflow:Infeed thread finished, shutting down. INFO:tensorflow:infeed marked as finished INFO:tensorflow:Stop output thread controller INFO:tensorflow:Shutting down OutfeedController thread. INFO:tensorflow:OutfeedController received shutdown signal, stopping. INFO:tensorflow:Outfeed thread finished, shutting down. INFO:tensorflow:outfeed marked as finished INFO:tensorflow:Shutdown TPU system. INFO:tensorflow:Loss for final step: 0.6467617. INFO:tensorflow:training_loop marked as finished <tensorflow_estimator.python.estimator.tpu.tpu_estimator.TPUEstimator at 0x7f168035b128>
Then, call TPUEstimator.evaluate
to evaluate the model using the evaluation data:
estimator.evaluate(_eval_input_fn, steps=1)
INFO:tensorflow:Could not find trained model in model_dir: /tmp/tmpxc9fm1_q, running initialization to evaluate. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.10:8470) for TPU system metadata. INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 6349538157198932596) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 9059152445598865227) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 3922455949451878923) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, -6084187114011162725) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, 8400191476321474241) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, 5484621084550964852) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -8416772895681308377) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, 2490716523526845408) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 7973779273400954871) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 6478654019570154047) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 7299189593611257732) WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:3406: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Deprecated in favor of operator or tf.math.divide. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-03-02T13:22:48 INFO:tensorflow:TPU job name worker INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Init TPU system INFO:tensorflow:Initialized TPU in 11 seconds INFO:tensorflow:Starting infeed thread controller. INFO:tensorflow:Starting outfeed thread controller. INFO:tensorflow:Initialized dataset iterators in 0 seconds INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed. INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed. INFO:tensorflow:Outfeed finished for iteration (0, 0) INFO:tensorflow:Evaluation [1/1] INFO:tensorflow:Stop infeed thread controller INFO:tensorflow:Shutting down InfeedController thread. INFO:tensorflow:InfeedController received shutdown signal, stopping. INFO:tensorflow:Infeed thread finished, shutting down. INFO:tensorflow:infeed marked as finished INFO:tensorflow:Stop output thread controller INFO:tensorflow:Shutting down OutfeedController thread. INFO:tensorflow:OutfeedController received shutdown signal, stopping. INFO:tensorflow:Outfeed thread finished, shutting down. INFO:tensorflow:outfeed marked as finished INFO:tensorflow:Shutdown TPU system. INFO:tensorflow:Inference Time : 12.06464s INFO:tensorflow:Finished evaluation at 2022-03-02-13:23:00 INFO:tensorflow:Saving dict for global step 1: global_step = 1, loss = 0.16138805 INFO:tensorflow:evaluation_loop marked as finished {'loss': 0.16138805, 'global_step': 1}
TensorFlow 2: Train embeddings on TPUs with TPUStrategy
In TensorFlow 2, to train on the TPU workers, use tf.distribute.TPUStrategy
together with the Keras APIs for model definition and training/evaluation. (Refer to the Use TPUs guide for more examples of training with Keras Model.fit and a custom training loop (with tf.function
and tf.GradientTape
).)
Since you need to perform some initialization work to connect to the remote cluster and initialize the TPU workers, start by creating a TPUClusterResolver
to provide the cluster information and connect to the cluster. (Learn more in the TPU initialization section of the Use TPUs guide.)
cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(cluster_resolver)
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.10:8470 INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.10:8470 INFO:tensorflow:Finished initializing TPU system. INFO:tensorflow:Finished initializing TPU system. All devices: [LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:0', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:1', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:2', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:3', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:4', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:5', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:6', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:7', device_type='TPU')]
Next, prepare your data. This is similar to how you created a dataset in the TensorFlow 1 example, except the dataset function is now passed a tf.distribute.InputContext
object rather than a params
dict. You can use this object to determine the local batch size (and which host this pipeline is for, so you can properly partition your data).
- When using the
tfrs.layers.embedding.TPUEmbedding
API, it is important to include thedrop_remainder=True
option when batching the dataset withDataset.batch
, sinceTPUEmbedding
requires a fixed batch size. - Additionally, the same batch size must be used for evaluation and training if they are taking place on the same set of devices.
- Finally, you should use
tf.keras.utils.experimental.DatasetCreator
along with the special input option—experimental_fetch_to_device=False
—intf.distribute.InputOptions
(which holds strategy-specific configurations). This is demonstrated below:
global_batch_size = 8
def _input_dataset(context: tf.distribute.InputContext):
dataset = tf.data.Dataset.from_tensor_slices((
{"dense_feature": features,
"sparse_feature": tf.SparseTensor(
embedding_features_indices,
embedding_features_values, [1, 2])},
labels))
dataset = dataset.shuffle(10).repeat()
dataset = dataset.batch(
context.get_per_replica_batch_size(global_batch_size),
drop_remainder=True)
return dataset.prefetch(2)
def _eval_dataset(context: tf.distribute.InputContext):
dataset = tf.data.Dataset.from_tensor_slices((
{"dense_feature": eval_features,
"sparse_feature": tf.SparseTensor(
eval_embedding_features_indices,
eval_embedding_features_values, [1, 2])},
eval_labels))
dataset = dataset.repeat()
dataset = dataset.batch(
context.get_per_replica_batch_size(global_batch_size),
drop_remainder=True)
return dataset.prefetch(2)
input_options = tf.distribute.InputOptions(
experimental_fetch_to_device=False)
input_dataset = tf.keras.utils.experimental.DatasetCreator(
_input_dataset, input_options=input_options)
eval_dataset = tf.keras.utils.experimental.DatasetCreator(
_eval_dataset, input_options=input_options)
Next, once the data is prepared, you will create a TPUStrategy
, and define a model, metrics, and an optimizer under the scope of this strategy (Strategy.scope
).
You should pick a number for steps_per_execution
in Model.compile
since it specifies the number of batches to run during each tf.function
call, and is critical for performance. This argument is similar to iterations_per_loop
used in TPUEstimator
.
The features and table configuration that were specified in TensorFlow 1 via the tf.tpu.experimental.embedding_column
(and tf.tpu.experimental.shared_embedding_column
) can be specified directly in TensorFlow 2 via a pair of configuration objects:
(Refer to the associated API documentation for more details.)
strategy = tf.distribute.TPUStrategy(cluster_resolver)
with strategy.scope():
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
dense_input = tf.keras.Input(shape=(2,), dtype=tf.float32, batch_size=global_batch_size)
sparse_input = tf.keras.Input(shape=(), dtype=tf.int32, batch_size=global_batch_size)
embedded_input = tfrs.layers.embedding.TPUEmbedding(
feature_config=tf.tpu.experimental.embedding.FeatureConfig(
table=tf.tpu.experimental.embedding.TableConfig(
vocabulary_size=10,
dim=5,
initializer=tf.initializers.TruncatedNormal(mean=0.0, stddev=1)),
name="sparse_input"),
optimizer=optimizer)(sparse_input)
input = tf.keras.layers.Concatenate(axis=1)([dense_input, embedded_input])
result = tf.keras.layers.Dense(1)(input)
model = tf.keras.Model(inputs={"dense_feature": dense_input, "sparse_feature": sparse_input}, outputs=result)
model.compile(optimizer, "mse", steps_per_execution=10)
INFO:tensorflow:Found TPU system: INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
With that, you are ready to train the model with the training dataset:
model.fit(input_dataset, epochs=5, steps_per_epoch=10)
Epoch 1/5 10/10 [==============================] - 2s 175ms/step - loss: 0.0057 10/10 [==============================] - 0s 3ms/step - loss: 0.0000e+00 10/10 [==============================] - 0s 3ms/step - loss: 0.0000e+00 10/10 [==============================] - 0s 3ms/step - loss: 0.0000e+00 10/10 [==============================] - 0s 3ms/step - loss: 0.0000e+00 <keras.callbacks.History at 0x7f16803b4a90>
Finally, evaluate the model using the evaluation dataset:
model.evaluate(eval_dataset, steps=1, return_dict=True)
1/1 [==============================] - 1s 1s/step - loss: 12.2297 {'loss': 12.229663848876953}
Next steps
Learn more about setting up TPU-specific embeddings in the API docs:
tfrs.layers.embedding.TPUEmbedding
: particularly about feature and table configuration, setting the optimizer, creating a model (using the Keras functional API or via subclassingtf.keras.Model
), training/evaluation, and model serving withtf.saved_model
tf.tpu.experimental.embedding.TableConfig
tf.tpu.experimental.embedding.FeatureConfig
For more information about TPUStrategy
in TensorFlow 2, consider the following resources:
- Guide: Use TPUs (covering training with Keras
Model.fit
/a custom training loop withtf.distribute.TPUStrategy
, as well as tips on improving the performance withtf.function
) - Guide: Distributed training with TensorFlow
- Guide: Migrate from TPUEstimator to TPUStrategy.
To learn more about customizing your training, refer to:
TPUs—Google's specialized ASICs for machine learning—are available through Google Colab, the TPU Research Cloud, and Cloud TPU.