Група Матьє

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Групи Матьє — це п'ять спорадичних простих груп, M11[en], M12[en], M22[en], M23[en] і M24[en], які ввів Еміль Леонар Матьє[1][2]. Групи є кратно транзитивними групами перестановок 11, 12, 22, 23 чи 24 об'єктів. Перші відкриті спорадичні групи.

Іноді використовують позначення M9, M10, M20 і M21 для пов'язаних груп (які діють на множинах із 9, 10, 20 і 21 точками, відповідно), а саме стабілізаторів точок у великих групах. Хоча це не спорадичні прості групи, вони є підгрупами великих груп і можуть бути використані для їх побудови. Джон Конвей показав, що можна продовжити цю послідовність, отримуючи групоїд Матьє[en] M13, що діє на 13 точок. M21 — проста, але не спорадична група, оскільки є ізоморфною PSL(3,4).

Історія

[ред. | ред. код]

Матьє[3] ввів групу M12 як частину дослідження кратно транзитивних груп перестановок і коротко згадав (на стор. 274) групу M24, вказавши її порядок. У статті 1873 року[2] він навів додаткові деталі, включаючи явні породжувальні множини для цих груп, але групу нелегко побачити з його аргументів, що згенеровані групи не просто знакозмінні групи, і кілька років існування груп було під сумнівом. Міллер[4] навіть опублікував статтю з хибним доведенням, що M24 не існує, хоча незабаром після цього у статті 1900 року[5] він визнав, що доведення мало помилки, і дав доведення, що групи Матьє прості. Вітт[6][7] нарешті припинив сумніви про існування цих груп, побудувавши їх, як послідовні транзитивні розширення груп перестановок, а також як групи автоморфізмів систем Штейнера.

Після груп Матьє нових спорадичних груп не виявляли до 1965 року, коли було відкрито групу J1[en].

Кратно транзитивні групи

[ред. | ред. код]

Матьє цікавився пошуком кратно транзитивних груп перестановок. Для натурального числа k група перестановок G, яка діє на n точок, є k-транзитивною, якщо при заданні двох множин точок a1, … ak і b1, … bk зі властивістю, що всі ai різні й всі bi різні, існує елемент g групи G, який відображає ai в bі для всіх i від 1 до k. Така група називається гостро k-транзитивною, якщо елемент g єдиний (тобто дія на k-кортежі регулярна (строго транзитивна), а не просто транзитивна).

Група M24 5-транзитивна, а група M12 — гостро 5-транзитивна. Інші групи Матьє (прості та не прості), як підгрупи, що відповідають стабілізаторам m точок, мають нижчу транзитивність (M23 4-транзитивна, і т. д.).

4-транзитивними групами є тільки симетричні групи Sk для , знакозмінні групи Ak для , і групи Матьє M24[en], M23[en], M12[en] та M11[en][8].

Класичним результатом є результат Жордана, що тільки симетрична та знакозмінні групи (степенів k і k + 2 відповідно), а також M12 і M11 є гостро k-транзитивними групами перестановок для .

Важливими прикладами кратно транзитивних груп є 2-транзитивні групи[en] та групи Цассенгауса[en]. Останні, зокрема, включають проєктивну загальну лінійну групу проєктивної прямої над скінченним полем, PGL(2,Fq), яка є гостро 3-транзитивною (див. Подвійне відношення) на елементах.

Таблиця порядків та транзитивності

[ред. | ред. код]
Група Порядок Порядок (добуток) Розклад порядку Транзитивність Проста Спорадична
M24 244823040 3•16•20•21•22•23•24 210•33•5•7•11•23 5-транзитивна так спорадична
M23 10200960 3•16•20•21•22•23 27•32•5•7•11•23 4-транзитивна так спорадична
M22 443520 3•16•20•21•22 27•32•5•7•11 3-транзитивна так спорадична
M21 20160 3•16•20•21 26•32•5•7 2-транзитивна так PSL3(4)
M20 960 3•16•20 26•3•5 1-транзитивна ні
M12 95040 8•9•10•11•12 26•33•5•11 гостро 5-транзитивна так спорадична
M11 7920 8•9•10•11 24•32•5•11 гостро 4-транзитивна так спорадична
M10 720 8•9•10 24•32•5 гостро 3-транзитивна почти M10' ≈ Alt6
M9 72 8•9 23•32 гостро 2-транзитивна ні PSU3(2)[en]
M8 8 8 23 гостро 1-транзитивна (регулярна) ні Q

Побудова груп Матьє

[ред. | ред. код]

Групи Матьє можна побудувати різними способами.

Групи перестановок

[ред. | ред. код]

M12 має просту підгрупу порядку 660, максимальну підгрупу. Ця підгрупа ізоморфна проєктивній спеціальній лінійній групі PSL2(F11) над полем із 11 елементів. Якщо −1 позначити як a, а нескінченність як b, двома стандартними генераторами є перестановки (0123456789a) та (0b)(1a)(25)(37)(48)(69). Третій генератор, що дає M12, переводить елемент x групи F11 у , як за перестановки (26a7)(3945).

Ця група виявляється не ізоморфною жодному з членів нескінченних сімейств скінченних простих груп і називається спорадичною. M11 є стабілізатором точки M12 і теж виявляється спорадичною простою групою. M10, стабілізатор двох точок, не є спорадичною, але є майже простою групою, комутант якої — знакозмінна група A6. Вона пов'язана з винятковим зовнішнім автоморфізмом[en] групи A6. Стабілізатор 3 точок — проєктивна спеціальна унітарна група[en] PSU(3,22), яка є розв'язною. Стабілізатор 4 точок — група кватерніонів.

Подібно, M24 має максимальну просту підгрупу порядку 6072, ізоморфну PSL2(F23). Один генератор додає 1 кожному елементи поля (залишаючи точку N на нескінченності нерухомою), тобто перестановка (0123456789ABCDEFGHIJKLM)(N), а інший є перестановкою, що обертає порядок, (0N)(1M)(2B)(3F)(4H)(59)(6J)(7D)(8K)(AG)(CL)(EI). Третій генератор, що дає M24 переводить елемент x групи F23 в . Обчислення показують, що це перестановка (2G968)(3CDI4) (7HABM)(EJLKF).

Стабілізатори 1 і 2 точок, M23 і M22, також виявляються простими спорадичними групами. Стабілізатор 3 точок є простою групою та ізоморфний проєктивній спеціальній лінійній групі PSL3(4).

Ці побудови процитував Кармайкл[9]. Діксон і Мортімер[10] приписують перестановки Емілю Матьє.

Групи автоморфізмів систем Штейнера

[ред. | ред. код]

Існує з точністю до еквівалентності єдина S(5,8,24) система Штейнера W24 (схема Вітта). Група M24 є групою автоморфізмів цієї системи Штейнера, тобто множина перестановок, які відображають кожен блок у деякий інший блок. Підгрупи M23 та M22 визначаються як стабілізатори однієї точки та двох точок відповідно.

Подібним чином, існує з точністю до еквівалентності єдина S(5,6,12) система Штейнера W12, а група M12 є її групою автоморфізмів. Підгрупа M11 є стабілізатором точки.

W12 можна побудувати з афінної геометрії на векторному просторі F3×F3 системи S(2,3,9).

Альтернативна побудова W12 — «кошеня» Кертіса[11].

Вступ до побудови W24 за допомогою чудового генератора октад[en] Р. Т. Кертіса та аналога для W12 (miniMOG) Конвея можна знайти в книзі Конвея і Слоуна.

Групи автоморфізмів кодів Голея

[ред. | ред. код]

Група M24 є групою автоморфізмів перестановок[en] розширеного двійкового коду Голея W, тобто групи перестановок 24 координат, що відображають W в себе. Усі групи Матьє можна побудувати як групи перестановок двійкових кодів Голея.

M12 має у своїй групі автоморфізмів індекс 2, а M12:2 виявляється ізоморфною підгрупою групи M24. M12 є стабілізатором коду з 12 одиниць. M12:2 стабілізує розділення у двох комплементарних кодах з 12 біт.

Існує природний зв'язок між групами Матьє та більшими групами Конвея, оскільки ґратку Ліча побудовано на бінарному коді Голея й обидві групи, фактично, лежать у просторі розмірності 24. Групи Конвея виявлено в Монстрі. Роберт Ґріс[en] називає 20 спорадичних груп, знайдених у Монстрі, щаслива родина, а групи Матьє — перше покоління.

Dessins d'enfants

[ред. | ред. код]

Групи Матьє можна побудувати за допомогою dessins d'enfants[en]фр. — дитячий малюнок)[12], а малюнок, асоційований з M12, ле Брюн назвав «Monsieur Mathieu» (Месьє Матьє)[13].

Примітки

[ред. | ред. код]
  1. Mathieu, 1861.
  2. а б Mathieu, 1873.
  3. Mathieu, 1861, с. 271.
  4. Miller, 1898.
  5. Miller, 1900.
  6. Witt, 1938a.
  7. Witt, 1938b.
  8. Cameron, 1999, с. 110.
  9. Carmichael, 1956, с. 151, 164, 263.
  10. Dixon, Mortimer, 1996, с. 209.
  11. Curtis, 1984.
  12. Буквально — дитячий малюнок (фр.). Термін запропонував Гротендік для одного з видів вкладення графів.
  13. le Bruyn, 2007.

Література

[ред. | ред. код]

Посилання

[ред. | ред. код]