Discover millions of ebooks, audiobooks, and so much more with a free trial

From $11.99/month after trial. Cancel anytime.

A New Era of Thought
A New Era of Thought
A New Era of Thought
Ebook289 pages3 hours

A New Era of Thought

Rating: 0 out of 5 stars

()

Read preview

About this ebook

This non-fiction work was written in the 19th century by Charles Howard Hinton. The philosophical theme of the book focuses on exploring the fourth dimension and its implications on human thinking. The first part is a collection of philosophical and mathematical essays on the fourth dimension, while in the second part Hinton develops a system of colored cubes. These cubes serve as models to get a four-dimensional perception as a basis of four-dimensional thinking.
LanguageEnglish
PublisherDigiCat
Release dateJun 3, 2022
ISBN8596547056423
A New Era of Thought

Related to A New Era of Thought

Related ebooks

Classics For You

View More

Related articles

Related categories

Reviews for A New Era of Thought

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    A New Era of Thought - Charles Howard Hinton

    Charles Howard Hinton

    A New Era of Thought

    EAN 8596547056423

    DigiCat, 2022

    Contact: [email protected]

    Table of Contents

    PREFACE.

    PART I.

    INTRODUCTION.

    CHAPTER I. SCEPTICISM AND SCIENCE. BEGINNING OF KNOWLEDGE.

    CHAPTER II. APPREHENSION OF NATURE. INTELLIGENCE. STUDY OF ARRANGEMENT OR SHAPE.

    CHAPTER III. THE ELEMENTS OF KNOWLEDGE.

    CHAPTER IV. THEORY AND PRACTICE.

    CHAPTER V. KNOWLEDGE: SELF-ELEMENTS.

    CHAPTER VI. FUNCTION OF MIND. SPACE AGAINST METAPHYSICS. SELF-LIMITATION AND ITS TEST. A PLANE WORLD.

    CHAPTER VII. SELF ELEMENTS IN OUR CONSCIOUSNESS.

    CHAPTER VIII. RELATION OF LOWER TO HIGHER SPACE. THEORY OF THE ÆTHER.

    CHAPTER IX. ANOTHER VIEW OF THE ÆTHER. MATERIAL AND ÆTHERIAL BODIES.

    CHAPTER X. HIGHER SPACE AND HIGHER BEING. PERCEPTION AND INSPIRATION.

    CHAPTER XI. SPACE THE SCIENTIFIC BASIS OF ALTRUISM AND RELIGION.

    PART II.

    CHAPTER I. THREE-SPACE. GENESIS OF A CUBE. APPEARANCES OF A CUBE TO A PLANE-BEING.

    CHAPTER II. FURTHER APPEARANCES OF A CUBE TO A PLANE-BEING.

    CHAPTER III. FOUR-SPACE. GENESIS OF A TESSARACT. ITS REPRESENTATION IN THREE-SPACE.

    CHAPTER IV. TESSARACT MOVING THROUGH THREE-SPACE. MODELS OF THE SECTIONS.

    CHAPTER V. REPRESENTATION OF THREE-SPACE BY NAMES, AND IN A PLANE.

    CHAPTER VI. THE MEANS BY WHICH A PLANE-BEING WOULD ACQUIRE A CONCEPTION OF OUR FIGURES.

    CHAPTER VII. FOUR-SPACE: ITS REPRESENTATION IN THREE-SPACE.

    CHAPTER VIII. REPRESENTATION OF FOUR-SPACE BY NAME. STUDY OF TESSARACTS.

    CHAPTER IX. FURTHER STUDY OF TESSARACTS.

    CHAPTER X. CYCLICAL PROJECTIONS.

    CHAPTER XI. A TESSARACTIC FIGURE AND ITS PROJECTIONS.

    APPENDICES.

    APPENDIX A.

    APPENDIX B.

    APPENDIX C.

    APPENDIX D.

    APPENDIX E. A Theorem in Four-space.

    APPENDIX F.

    APPENDIX H.

    APPENDIX K.

    PREFACE.

    Table of Contents

    The MSS. which formed the basis of this book were committed to us by the author, on his leaving England for a distant foreign appointment. It was his wish that we should construct upon them a much more complete treatise than we have effected, and with that intention he asked us to make any changes or additions we thought desirable. But long alliance with him in this work has convinced us that his thought (especially that of a general philosophical character) loses much of its force if subjected to any extraneous touch.

    This feeling has induced us to print Part I. almost exactly as it came from his hands, although it would probably have received much rearrangement if he could have watched it through the press himself.

    Part II. has been written from a hurried sketch, which he considered very inadequate, and which we have consequently corrected and supplemented. Chapter XI. of this part has been entirely re-written by us, and has thus not had the advantage of his supervision. This remark also applies to Appendix E, which is an elaboration of a theorem he suggested. Appendix H, and all the exercises have, in accordance with his wish, been written solely by us. It will be apparent to the reader that Appendix H is little more than a brief introduction to a very large subject, which, being concerned with tessaracts and solids, is really beyond treatment in writing and diagrams.

    This difficulty recalls us to the one great fact, upon which we feel bound to insist, that the matter of this book must receive objective treatment from the reader, who will find it quite useless even to attempt to apprehend it without actually building in squares and cubes all the facts of space which we ask him to impress on his consciousness. Indeed, we consider that printing, as a method of spreading space-knowledge, is but a pis aller, and we would go back to that ancient and more fruitful method of the Greek geometers, and, while describing figures on the sand, or piling up pebbles in series, would communicate to others that spirit of learning and generalization begotten in our consciousness by continuous contact with facts, and only by continuous contact with facts vitally maintained.

    ALICIA BOOLE,

    H. JOHN FALK.

    N.B. Models.—It is unquestionably a most important part of the process of learning space to construct these, and the reader should do so, however roughly and hastily. But, if Models are required as patterns, they may be ordered from Messrs. Swan Sonnenschein & Co., Paternoster Square, London, and will be supplied as soon as possible, the uncertainty as to demand for same not allowing us to have a large number made in advance. Much of the work can be done with plain cubes by using names without colours, but further on the reader will find colours necessary to enable him to grasp and retain the complex series of observations. Coloured models can easily be made by covering Kindergarten cubes with white paper and painting them with water-colour, and, if permanence be desired, dipping them in size and copal varnish.


    INTRODUCTORY NOTE TO PART I.

    Table of Contents

    At the completion of a work, or at the completion of the first part of a work, the feelings are necessarily very different from those with which the work was begun; and the meaning and value of the work itself bear a very different appearance. It will therefore be the simplest and shortest plan, if I tell the reader briefly what the work is to which these pages are a guide, and what I consider to be its value when done.

    The task was to obtain a sense of the properties of higher space, or space of four dimensions, in the same way as that by which we reach a sense of our ordinary three-dimensional space. I now prefer to call the task that of obtaining a familiarity with higher matter, which shall be as intuitive to the mind as that of ordinary matter has become. The expression higher matter is preferable to higher space, because it is a somewhat hasty proceeding to split this concrete matter, which we touch and feel, into the abstractions of extension and impenetrability. It seems to me that I cannot think of space without matter, and therefore, as no necessity compels me to such a course, I do not split up the concrete object into subtleties, but I simply ask: What is that which is to a cube or block or shape of any kind as the cube is to a square?

    In entering upon this inquiry we find the task is twofold. Firstly, there is the theoretical part, which is easy, viz. to set clearly before us the relative conditions which would obtain if there were a matter physically higher than this matter of ours, and to choose the best means of liberating our minds from the limitations imposed on it by the particular conditions under which we are placed. The second part of the task is somewhat laborious, and consists of a constant presentation to the senses of those appearances which portions of higher matter would present, and of a continual dwelling on them, until the higher matter becomes familiar.

    The reader must undertake this task, if he accepts it at all, as an experiment. Those of us who have done it, are satisfied that there is that in the results of the experiment which make it well worthy of a trial.

    And in a few words I may state the general bearings of this work, for every branch of work has its general bearings. It is an attempt, in the most elementary and simple domain, to pass from the lower to the higher. In pursuing it the mind passes from one kind of intuition to a higher one, and with that transition the horizon of thought is altered. It becomes clear that there is a physical existence transcending the ordinary physical existence; and one becomes inclined to think that the right direction to look is, not away from matter to spiritual existences, but towards the discovery of conceptions of higher matter, and thereby of those material existences whose definite relations to us are apprehended as spiritual intuitions. Thus, material would simply mean grasped by the intellect, become known and familiar. Our apprehension of anything which is not expressed in terms of matter, is vague and indefinite. To realize and live with that which we vaguely discern, we need to apply the intuition of higher matter to the world around us. And this seems to me the great inducement to this study. Let us form our intuition of higher space, and then look out upon the world.

    Secondly, in this progress from ordinary to higher matter, as a general type of progress from lower to higher, we make the following observations. Firstly, we become aware that there are certain limitations affecting our regard. Secondly, we discover by our reason what those limitations are, and then force ourselves to go through the experience which would be ours if the limitations did not affect us. Thirdly, we become aware of a capacity within us for transcending those limitations, and for living in the higher mode as we had lived in the previous one.

    We may remark that this progress from the ordinary to the higher kind of matter demands an absolute attention to details. It is only in the retention of details that such progress becomes possible. And as, in this question of matter, an absolute and unconventional examination gives us the indication of a higher, so, doubtless, in other questions, if we but come to facts without presupposition, we begin to know that there is a higher and to discover indications of the way whereby we can approach. That way lies in the fulness of detail rather than in the generalization.

    Biology has shown us that there is a universal order of forms or organisms, passing from lower to higher. Therein we find an indication that we ourselves take part in this progress. And in using the little cubes we can go through the process ourselves, and learn what it is in a little instance.

    But of all the ways in which the confidence gained from this lesson can be applied, the nearest to us lies in the suggestion it gives,—and more than the suggestion, if inclination to think be counted for anything,—in the suggestion of that which is higher than ourselves. We, as individuals, are not the limit and end-all, but there is a higher being than ours. What our relation to it is, we cannot tell, for that is unlike our relation to anything we know. But, perhaps all that happens to us is, could we but grasp it, our relation to it.

    At any rate, the discovery of it is the great object beside which all else is as secondary as the routine of mere existence is to companionship. And the method of discovery is full knowledge of each other. Thereby is the higher being to be known. In as much as the least of us knows and is known by another, in so much does he know the higher. Thus, scientific prayer is when two or three meet together, and, in the belief of one higher than themselves, mutually comprehend that vision of the higher, which each one is, and, by absolute fulness of knowledge of the facts of each other’s personality, strive to attain a knowledge of that which is to each of their personalities as a higher figure is to its solid sides.

    C. H. H.


    A NEW ERA OF THOUGHT.

    line

    PART I.

    Table of Contents

    INTRODUCTION.

    Table of Contents

    There are no new truths in this book, but it consists of an effort to impress upon and bring home to the mind some of the more modern developments of thought. A few sentences of Kant, a few leading ideas of Gauss and Lobatschewski form the material out of which it is built up.

    It may be thought to be unduly long; but it must be remembered that in these times there is a twofold process going on—one of discovery about external nature, one of education, by which our minds are brought into harmony with that which we know. In certain respects we find ourselves brought on by the general current of ideas—we feel that matter is permanent and cannot be annihilated, and it is almost an axiom in our minds that energy is persistent, and all its transformations remains the same in amount. But there are other directions in which there is need of definite training if we are to enter into the thoughts of the time.

    And it seems to me that a return to Kant, the creator of modern philosophy, is the first condition. Now of Kant’s enormous work only a small part is treated here, but with the difference that should be found between the work of a master and that of a follower. Kant’s statements are taken as leading ideas, suggesting a field of work, and it is in detail and manipulation merely that there is an opportunity for workmanship.

    Of Kant’s work it is only his doctrine of space which is here experimented upon. With Kant the perception of things as being in space is not treated as it seems so obvious to do. We should naturally say that there is space, and there are things in it. From a comparison of those properties which are common to all things we obtain the properties of space. But Kant says that this property of being in space is not so much a quality of any definable objects, as the means by which we obtain an apprehension of definable objects—it is the condition of our mental work.

    Now as Kant’s doctrine is usually commented on, the negative side is brought into prominence, the positive side is neglected. It is generally said that the mind cannot perceive things in themselves, but can only apprehend them subject to space conditions. And in this way the space conditions are as it were considered somewhat in the light of hindrances, whereby we are prevented from seeing what the objects in themselves truly are. But if we take the statement simply as it is—that we apprehend by means of space—then it is equally allowable to consider our space sense as a positive means by which the mind grasps its experience.

    There is in so many books in which the subject is treated a certain air of despondency—as if this space apprehension were a kind of veil which shut us off from nature. But there is no need to adopt this feeling. The first postulate of this book is a full recognition of the fact, that it is by means of space that we apprehend what is. Space is the instrument of the mind.

    And here for the purposes of our work we can avoid all metaphysical discussion. Very often a statement which seems to be very deep and abstruse and hard to grasp, is simply the form into which deep thinkers have thrown a very simple and practical observation. And for the present let us look on Kant’s great doctrine of space from a practical point of view, and it comes to this—it is important to develop the space sense, for it is the means by which we think about real things.

    There is a doctrine which found much favour with the first followers of Kant, that also affords us a simple and practical rule of work. It was considered by Fichte that the whole external world was simply a projection from the ego, and the manifold of nature was a recognition by the spirit of itself. What this comes to as a practical rule is, that we can only understand nature in virtue of our own activity; that there is no such thing as mere passive observation, but every act of sight and thought is an activity of our own.

    Now according to Kant the space sense, or the intuition of space, is the most fundamental power of the mind. But I do not find anywhere a systematic and thoroughgoing education of the space sense. In every practical pursuit it is needed—in some it is developed. In geometry it is used; but the great reason of failure in education is that, instead of a systematic training of the space sense, it is left to be organized by accident and is called upon to act without having been formed. According to Kant and according to common experience it will be found that a trained thinker is one in whom the space sense has been well developed.

    With regard to the education of the space sense, I must ask the indulgence of the reader. It will seem obvious to him that any real pursuit or real observation trains the space sense, and that it is going out of the way to undertake any special discipline.

    To this I would answer that, according to my own experience, I was perfectly ignorant of space relations myself before I actually worked at the subject, and that directly I got a true view of space facts a whole series of conceptions, which before I had known merely by repute and grasped by an effort, became perfectly simple and clear to me.

    Moreover, to take one instance: in studying the relations of space we always have to do with coloured objects, we always have the sense of weight; for if the things themselves have no weight, there is always a direction of up and down—which implies the sense of weight, and to get rid of these elements requires careful sifting. But perhaps the best point of view to take is this—if the reader has the space sense well developed he will have no difficulty in going through the part of the book which relates to it, and the phraseology will serve him for the considerations which come next.

    Amongst the followers of Kant, those who pursued one of the lines of thought in his works have attracted the most attention and have been considered as his successors. Fichte, Schelling, Hegel have developed certain tendencies and have written remarkable books. But the true successors of Kant are Gauss and Lobatchewski.

    For if our intuition of space is the means by which we apprehend, then it follows that there may be different kinds of intuitions of space. Who can tell what the absolute space intuition is? This intuition of space must be coloured, so to speak, by the conditions of the being which uses it.

    Now, after Kant had laid down his doctrine of space, it was important to investigate how much in our space intuition is due to experience—is a matter of the physical circumstances of the thinking being—and how much is the pure act of the mind.

    The only way to investigate this is the practical way, and by a remarkable analysis the great geometers above mentioned have shown that space is not limited as ordinary experience would seem to inform us, but that we are quite capable of conceiving different kinds of space.

    Our space as we ordinarily think of it is conceived as limited—not in extent, but in a certain way which can only be realized when we think of our ways of measuring space objects. It is found that there are only three independent directions in which a body can be measured—it must have height, length and breadth, but it has no more than these dimensions. If any other measurement be taken in it, this new measurement will be found to be compounded of the old measurements. It is impossible to find a point in the body which could not be arrived at by travelling in combinations of the three directions already taken.

    But why should space be limited to three independent directions?

    Geometers have found that there

    Enjoying the preview?
    Page 1 of 1