Soluble host factors in the upper respiratory tract can serve as the first line of defense against SARS-CoV-2 infection. In this study, we described the identification and function of a human airway trypsin–like protease (HAT), capable of reducing the infectivity of ancestral SARS-CoV-2. Further, in mouse models, HAT analogue expression was upregulated by SARS-CoV-2 infection. The antiviral activity of HAT functioned through the cleavage of the SARS-CoV-2 spike glycoprotein at R682. This cleavage resulted in inhibition of the attachment of ancestral spike proteins to host cells, which inhibited the cell-cell membrane fusion process. Importantly, exogenous addition of HAT notably reduced the infectivity of ancestral SARS-CoV-2 in vivo. However, HAT was ineffective against the Delta variant and most circulating Omicron variants, including the BQ.1.1 and XBB.1.5 subvariants. We demonstrate that the P681R mutation in Delta and P681H mutation in the Omicron variants, adjacent to the R682 cleavage site, contributed to HAT resistance. Our study reports what we believe to be a novel soluble defense factor against SARS-CoV-2 and resistance of its actions in the Delta and Omicron variants.
Wenyan Ren, Weiqi Hong, Jingyun Yang, Jun Zou, Li Chen, Yanan Zhou, Hong Lei, Aqu Alu, Haiying Que, Yanqiu Gong, Zhenfei Bi, Cai He, Minyang Fu, Dandan Peng, Yun Yang, Wenhai Yu, Cong Tang, Qing Huang, Mengli Yang, Bai Li, Jingmei Li, Junbin Wang, Xuelei Ma, Hongbo Hu, Wei Cheng, Haohao Dong, Jian Lei, Lu Chen, Xikun Zhou, Jiong Li, Wei Wang, Guangwen Lu, Guobo Shen, Li Yang, Jinliang Yang, Zhenling Wang, Guowen Jia, Zhaoming Su, Bin Shao, Hanpei Miao, Johnson Yiu-Nam Lau, Yuquan Wei, Kang Zhang, Lunzhi Dai, Shuaiyao Lu, Xiawei Wei
BACKGROUND. There is uncertainty around the timing of booster vaccination against COVID-19 in highly vaccinated populations during the present endemic phase of COVID-19. Studies focused on primary vaccination have previously suggested improved immunity after delaying immunisation. METHODS. We conducted a randomised controlled trial (Nov 2022 – Aug 2023) and assigned 52 fully vaccinated adults to an immediate or a 3-month delayed bivalent Spikevax mRNA booster vaccine. Follow-up visits were completed for 48 participants (n = 24 per arm), with saliva and plasma samples collected following each visit. RESULTS. The rise in neutralising antibody responses to ancestral and Omicron strains were almost identical between the immediate and delayed vaccination arms. Analyses of plasma and salivary antibody responses (IgG, IgA), plasma antibody-dependent phagocytic activity, and the decay kinetics of antibody responses were similar between the 2 arms. Symptomatic and asymptomatic SARS-CoV-2 infection occurred in 49% (21/49) participants over the median 11.5 months of follow up and were also similar between the 2 arms. CONCLUSIONS. Our data suggests no benefit from delaying COVID-19 mRNA booster vaccination in pre-immune populations during the present endemic phase of COVID-19 TRIAL REGISTRATION. Australian New Zealand Clinical Trials Registry number 12622000411741. FUNDING. National Health and Medical Research Council, Australia, Program Grant App1149990 and Medical Research Future Fund App2005544.
Wen Shi Lee, Jennifer Audsley, Mai-Chi Trieu, Arnold Reynaldi, L. Carissa Aurelia, Palak H. Mehta, Joanne Patterson, Helen E. Kent, Julie Nguyen, Thakshila Amarasena, Robyn Esterbauer, Ebene R. Haycroft, Pradhipa Ramanathan, Miles P. Davenport, Timothy E. Schlub, Joseph Sasadeusz, Adam K. Wheatley, Amy W. Chung, Jennifer A. Juno, Kevin J. Selva, Stephen J. Kent
BACKGROUND Patients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODS We performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTS Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSION Our longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATION ClinicalTrials.gov NCT04378777.FUNDING NIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).
Jeremy P. Gygi, Cole Maguire, Ravi K. Patel, Pramod Shinde, Anna Konstorum, Casey P. Shannon, Leqi Xu, Annmarie Hoch, Naresh Doni Jayavelu, Elias K. Haddad, IMPACC Network, Elaine F. Reed, Monica Kraft, Grace A. McComsey, Jordan P. Metcalf, Al Ozonoff, Denise Esserman, Charles B. Cairns, Nadine Rouphael, Steven E. Bosinger, Seunghee Kim-Schulze, Florian Krammer, Lindsey B. Rosen, Harm van Bakel, Michael Wilson, Walter L. Eckalbar, Holden T. Maecker, Charles R. Langelier, Hanno Steen, Matthew C. Altman, Ruth R. Montgomery, Ofer Levy, Esther Melamed, Bali Pulendran, Joann Diray-Arce, Kinga K. Smolen, Gabriela K. Fragiadakis, Patrice M. Becker, Rafick P. Sekaly, Lauren I.R. Ehrlich, Slim Fourati, Bjoern Peters, Steven H. Kleinstein, Leying Guan
SARS-CoV-2 infection of the upper airway and the subsequent immune response are early, critical factors in COVID-19 pathogenesis. By studying infection of human biopsies in vitro and in a hamster model in vivo, we demonstrated a transition in nasal tropism from olfactory to respiratory epithelium as the virus evolved. Analyzing each variant revealed that SARS-CoV-2 WA1 or Delta infect a proportion of olfactory neurons in addition to the primary target sustentacular cells. The Delta variant possessed broader cellular invasion capacity into the submucosa, while Omicron displayed enhanced nasal respiratory infection and longer retention in the sinonasal epithelium. The olfactory neuronal infection by WA1 and the subsequent olfactory bulb transport via axon were more pronounced in younger hosts. In addition, the observed viral clearance delay and phagocytic dysfunction in aged olfactory mucosa were accompanied by a decline of phagocytosis related genes. Furthermore, robust basal stem cell activation contributed to neuroepithelial regeneration and restores ACE2 expression post-infection. Together, our study characterized the nasal tropism of SARS-CoV-2 strains, immune clearance, and regeneration post infection. The shifting characteristics of viral infection at the airway portal provides insight into the variability of COVID-19 clinical features, particularly long COVID, and may suggest differing strategies for early local intervention.
Mengfei Chen, Andrew Pekosz, Jason S. Villano, Wenjuan Shen, Ruifeng Zhou, Heather Kulaga, Zhexuan Li, Amy Smith, Asiana Gurung, Sarah E. Beck, Kenneth W. Witwer, Joseph L. Mankowski, Murugappan Ramanathan Jr., Nicholas R. Rowan, Andrew P. Lane
Fang Yun Lim, Soo-Young Kim, Karisma N. Kulkarni, Rachel L. Blazevic, Louise E. Kimball, Hannah G. Lea, Amanda J. Haack, Maia S. Gower, Terry Stevens-Ayers, Lea M. Starita, Michael Boeckh, Ollivier Hyrien, Joshua T. Schiffer, Ashleigh B. Theberge, Alpana Waghmare
Ruangang Pan, David K. Meyerholz, Stanley Perlman
Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in severely ill patients and the pathophysiology of disease is thought to be immune-mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens, often promoting inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and non-human primates. Using a mouse model of MC-deficiency, MC-dependent interstitial pneumonitis, hemorrhaging, and edema in the lung were observed during SARS-CoV-2 infection. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype in severe disease. MC activation in humans was confirmed, through detection of MC-specific proteases, including chymase, levels of which were significantly correlated with disease severity and with biomarkers of vascular dysregulation. These results support the involvement of MCs in lung tissue damage during SARS-CoV-2 infection in animal models and the association of MC activation with severe COVID-19 in humans, suggesting potential strategies for intervention.
Janessa Yan Jun Tan, Danielle E. Anderson, Abhay P.S. Rathore, Aled O'Neill, Chinmay Kumar Mantri, Wilfried A.A. Saron, Cheryl Q.E. Lee, Wern Cui Chu, Adrian E.Z. Kang, Randy Foo, Shirin Kalimuddin, Jenny G. Low, Lena Ho, Paul Tambyah, Thomas W. Burke, Christopher W. Woods, Kuan Rong Chan, Joern Karhausen, Ashley L. St. John
Natalie E. Stevens, Feargal J. Ryan, Nicole L. Messina, Stephen J. Blake, Todd S. Norton, Susie Germano, Jane James, Georgina L. Eden, Yee C. Tee, Miriam A. Lynn, Rochelle Botten, Simone E. Barry, Nigel Curtis, David J. Lynn
BACKGROUND. SARS-CoV-2 infection in Africa has been characterized by less severe disease than elsewhere but the profile of SARS-CoV-2 specific adaptive immunity in this largely asymptomatic spread has not been studied. METHODS. We collected blood and nasopharyngeal samples from rural Kenyans (n=80) without respiratory symptoms since 2019, had no contact with COVID-19 cases or received COVID-19 vaccines and were negative for current SARS-CoV-2 infection. We analyzed spike-specific antibodies and T cells specific for SARS-CoV-2 structural (membrane, nucleocapsid and spike) and accessory (ORF3a, ORF7, ORF8) proteins. Pre-pandemic samples collected in urban Nairobi, Kenya (n=13) between 2015-2016 and samples of mild-moderately symptomatic COVID-19 convalescents (n=36) living in the urban environment of Singapore were also studied. RESULTS. Among asymptomatic Kenyans, we detected anti-spike antibodies in 41.0% and T cell responses against ≥2 SARS-CoV-2 proteins in 82.5%. The pre-pandemic samples from Nairobi had low-level, monospecific responses. Furthermore, distinct from cellular immunity in European and Asian COVID-19 convalescents, strong T cell immunogenicity was observed against viral accessory proteins (ORF3a, ORF8) and not structural proteins, as well as a higher IL-10/IFN-γ ratio cytokine profile. CONCLUSIONS. The high incidence of T cell responses against different SARS-CoV-2 proteins in largely seronegative participants suggests that serosurveys underestimate SARS-CoV-2 prevalence in settings where asymptomatic infections prevail. Similar observations have been made with other coronavirus infections such as MERS and SARS-CoV-1. The functional and antigen-specific profile of SARS-CoV-2 specific T cells in these African individuals suggests that genetic or environmental factors play a role in the development of protective antiviral immunity. FUNDINGS. U.S. Centers for Disease Control and Prevention, Division of Global Health Protection; the Singapore Ministry of Health’s National Medical Research Council.
Taraz Samandari, Joshua Ongalo, Kimberly McCarthy, Richard K. Biegon, Philister Madiega, Anne Mithika, Joseph Orinda, Grace M. Mboya, Patrick Mwaura, Omu Anzala, Clayton Onyango, Fredrick O. Oluoch, Eric M. Osoro, Charles-Antoine Dutertre, Nicole Tan, Shou Kit Hang, Smrithi Hariharaputran, David C. Lye, Amy Herman-Roloff, Nina Le Bert, Antonio Bertoletti
Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions, and plays immunopathological roles in inflammatory diseases, we investigated whether C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill COVID-19 patients compared to patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular trap (NET)s-dependent immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.
Bruna M.S. Silva, Giovanni F. Gomes, Flavio P. Veras, Seppe Cambier, Gabriel V.L. Silva, Andreza U. Quadros, Diego B. Caetité, Daniele C. Nascimento, Camila M.S. Silva, Juliana C. Costa Silva, Samara Damasceno, Ayda H. Schneider, Fabio Beretta, Sabrina S. Batah, Icaro M.S. Castro, Isadora M. Paiva, Tamara Rodrigues, Ana Salina, Ronaldo Martins, Guilherme C. Martelossi Cebinelli, Naira L. Bibo, Daniel Macedo de Melo Jorge, Helder I. Nakaya, Dario S. Zamboni, Luiz O. Leiria, Alexandre T. Fabro, José C. Alves-Filho, Eurico Arruda, Paulo Louzada-Junior, Renê D.R. Oliveira, Larissa D. Cunha, Pierre Van Mol, Lore Vanderbeke, Simon Feys, Els Wauters, Laura Brandolini, Andrea Aramini, Fernando Q. Cunha, Jörg Köhl, Marcello Allegretti, Diether Lambrechts, Joost Wauters, Paul Proost, Thiago M. Cunha
No posts were found with this tag.