计算机科学 ›› 2018, Vol. 45 ›› Issue (6A): 423-427.

• 大数据与数据挖掘 • 上一篇    下一篇

基于社交关系和用户偏好的多样性图推荐方法

石进平1,3,李劲1,3,和凤珍2   

  1. 云南大学软件学院 昆明 6500911
    云南大学旅游文化学院信科系 云南 丽江6741992
    云南省软件工程重点实验室 昆明 6500913
  • 出版日期:2018-06-20 发布日期:2018-08-03
  • 作者简介:石进平(1989-),男,硕士,主要研究方向为大数据分析与处理、机器学习;李 劲(1975-),男,博士,副教授,主要研究方向为大数据分析与处理、机器学习,E-mail:[email protected];和凤珍(1988-),女,讲师,主要研究方向为数据挖掘。
  • 基金资助:
    国家自然科学基金项目(61562091),云南省应用基础研究计划面上项目(2016FB110),云南省软件工程重点实验室开放项目(2012SE303,2012SE205)资助

Diversity Recommendation Approach Based on Social Relationship and User Preference

SHI Jin-ping1,3,LI Jin1,3,HE Feng-zhen2   

  1. School of Software,Yunnan University,Kunming 650091,China1
    Department of Information and Science,College of Tourism and Culture,Yunnan University,Lijiang,Yunnan 674199,China2
    Key Laboratory of Software Engineering of Yunnan Province,Kunming 650091,China3
  • Online:2018-06-20 Published:2018-08-03

摘要: 以协同过滤为代表的传统推荐算法能够为用户提供准确率较高的推荐列表,但忽略了推荐系统中另外一个重要的衡量标准:多样性。随着社交网络的日益发展,大量冗余和重复的信息充斥其间,信息过载使得快速、有效地发现用户的兴趣爱好变得更加困难。针对某个用户推荐最能满足其兴趣爱好的物品,需要具备显著的相关度且能覆盖用户广泛的兴趣爱好。因此,基于社交关系和用户偏好提出一种面向多样性和相关度的图排序框架。首先,引入社交关系图模型,综合考虑用户及物品之间的关系,以更好地建模它们的相关度;然后,利用线性模型融合多样性和相关性两个重要指标;最后,利用Spark GraphX并行图计算框架实现该算法,并在真实的数据集上通过实验验证所提方法的有效性和扩展性。

关键词: Spark GraphX, 多样性, 个性化推荐系统, 社交网络, 相关性

Abstract: The traditional recommendation algorithm,represented by collaborative filtering,can provide users with a high recommended list with high accuracy,while ignoring another important measure which is diversity in the recommendation system.With the increasing development of social networks,with a lot of redundancy and duplication of information,the overload information makes it more difficult to find user interests quickly and effectively.For recommending the most content for users to meet their hobbies,user interests with a significant relevance and covering different aspects are needed.Therefore,based on social relations and user preferences,this paper proposed a sorting framework for diversity and relevance.Firstly,this paper introduced the social relations graph model,considering the relationship between users and items to better model their relevance.Then,this paper used a linear model to integrate the two important indexes of diversity and relevance.Finally,the algorithm was implemented by Spark GraphX parallel graph calculation framework,and experiments were carried on real dataset to verify the feasibility and scalability of the proposed algorithm.

Key words: Diversity, Personalized recommendation system, Relevance, Social network, Spark GraphX

中图分类号: 

  • TP391
[1]KUNAVER M,PO RL T.Diversity in recommender systems-A survey[J].Knowledge-Based Systems,2017,123:154-162.<br /> [2]JAVARI A,IZADI M,JALILI M.Recommender Systems for Social Networks Analysis and Mining:Precision Versus Diversity[J].Understanding Complex Systems,2016,73:423-438.<br /> [3]LEE K,LEE K.Escaping your comfort zone:A graph-based recommender system for finding novel recommendations among relevant items[J].Expert Systems with Applications,2015,42(10):4851-4858.<br /> [4]AYTEKIN T,KARAKAYA M .Clustering-based diversity improvement in top-N recommendation[J].Journal of Intelligent Information Systems,2014,42(1):1-18.<br /> [5]MCNEE S M,RIEDL J,KONSTAN J A.Being accurate is not enough:how accuracy metrics have hurt recommender systems[C]∥CHI ’06 Extended Abstracts on Human Factors in Computing Systems.ACM,2006:1097-1101.<br /> [6]ZIEGLER C,MCNEE S M,KONSTAN J A,et al.Improving recommendation lists through topic diversication[C]∥International Conference on World Wide Web.2005:22-32.<br /> [7]HURLEY N,ZHANG M.Novelty and Diversity in Top-N Re- commendation- Analysis and Evaluation[J].ACM Transactions on Internet Technology,2011,10(4):1-30.<br /> [8]SUN Z,HAN L,HUANG W,et al.Recommender systems based on social networks[J].Journal of Systems and Software,2015,99(C):109-119.<br /> [9]LIU R,JIN Z.An Improved Graph-based Recommender System for Finding Novel Recommendations among Relevant Items[C]∥International Conference on Mechatronics,Materials,Chemistry and Computer Engineering.2015.<br /> [10]SHANNON C E.A mathematical theory of communication[J]. ACM Sigmobile Mobile Computing & Communications Review,2001,5(1):3-55. [11]ANTIKACIOGLU A,RAVI R.Post Processing Recommender Systems for Diversity[C]∥The ACM SIGKDD International Conference.ACM,2017:707-716.<br /> [12]LEE S C,KIM S W,PARK S,et al.A Single-Step Approach to Recommendation Diversification[C]∥26th International Conference on World Wide Web Companion.2017.
[1] 陈莹, 郝应光, 王洪玉, 王坤.
基于局部梯度强度图的动态规划检测前跟踪算法
Dynamic Programming Track-Before-Detect Algorithm Based on Local Gradient and Intensity Map
计算机科学, 2022, 49(8): 150-156. https://doi.org/10.11896/jsjkx.210700135
[2] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[3] 杨啸, 王翔坤, 胡浩, 朱敏.
面向设备状态监测的可视化技术综述
Survey on Visualization Technology for Equipment Condition Monitoring
计算机科学, 2022, 49(7): 89-99. https://doi.org/10.11896/jsjkx.210900167
[4] 魏鹏, 马玉亮, 袁野, 吴安彪.
用户行为驱动的时序影响力最大化问题研究
Study on Temporal Influence Maximization Driven by User Behavior
计算机科学, 2022, 49(6): 119-126. https://doi.org/10.11896/jsjkx.210700145
[5] 王宇飞, 陈文.
基于DECORATE集成学习与置信度评估的Tri-training算法
Tri-training Algorithm Based on DECORATE Ensemble Learning and Credibility Assessment
计算机科学, 2022, 49(6): 127-133. https://doi.org/10.11896/jsjkx.211100043
[6] 余皑欣, 冯秀芳, 孙静宇.
结合物品相似性的社交信任推荐算法
Social Trust Recommendation Algorithm Combining Item Similarity
计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217
[7] 陈壮, 邹海涛, 郑尚, 于化龙, 高尚.
基于用户覆盖及评分差异的多样性推荐算法
Diversity Recommendation Algorithm Based on User Coverage and Rating Differences
计算机科学, 2022, 49(5): 159-164. https://doi.org/10.11896/jsjkx.210300263
[8] 赵耿, 王超, 马英杰.
基于混沌序列相关性的峰均比抑制研究
Study on PAPR Reduction Based on Correlation of Chaotic Sequences
计算机科学, 2022, 49(5): 250-255. https://doi.org/10.11896/jsjkx.210400292
[9] 畅雅雯, 杨波, 高玥琳, 黄靖云.
基于SEIR的微信公众号信息传播建模与分析
Modeling and Analysis of WeChat Official Account Information Dissemination Based on SEIR
计算机科学, 2022, 49(4): 56-66. https://doi.org/10.11896/jsjkx.210900169
[10] 左园林, 龚月姣, 陈伟能.
成本受限条件下的社交网络影响最大化方法
Budget-aware Influence Maximization in Social Networks
计算机科学, 2022, 49(4): 100-109. https://doi.org/10.11896/jsjkx.210300228
[11] 郭磊, 马廷淮.
基于好友亲密度的用户匹配
Friend Closeness Based User Matching
计算机科学, 2022, 49(3): 113-120. https://doi.org/10.11896/jsjkx.210200137
[12] 刘意, 毛莺池, 程杨堃, 高建, 王龙宝.
基于邻域一致性的异常检测序列集成方法
Locality and Consistency Based Sequential Ensemble Method for Outlier Detection
计算机科学, 2022, 49(1): 146-152. https://doi.org/10.11896/jsjkx.201000156
[13] 冯霞, 胡志毅, 刘才华.
跨模态检索研究进展综述
Survey of Research Progress on Cross-modal Retrieval
计算机科学, 2021, 48(8): 13-23. https://doi.org/10.11896/jsjkx.200800165
[14] 王剑, 王玉翠, 黄梦杰.
社交网络中的虚假信息:定义、检测及控制
False Information in Social Networks:Definition,Detection and Control
计算机科学, 2021, 48(8): 263-277. https://doi.org/10.11896/jsjkx.210300053
[15] 谭琪, 张凤荔, 王婷, 王瑞锦, 周世杰.
融入结构度中心性的社交网络用户影响力评估算法
Social Network User Influence Evaluation Algorithm Integrating Structure Centrality
计算机科学, 2021, 48(7): 124-129. https://doi.org/10.11896/jsjkx.200600096
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!