计算机科学 ›› 2021, Vol. 48 ›› Issue (5): 147-154.doi: 10.11896/jsjkx.200300072

• 数据库&大数据&数据科学 • 上一篇    下一篇

融合用户评分与显隐兴趣相似度的协同过滤推荐算法

武建新, 张志鸿   

  1. 郑州大学信息工程学院 郑州450001
  • 收稿日期:2020-03-13 修回日期:2020-06-27 出版日期:2021-05-15 发布日期:2021-05-09
  • 通讯作者: 张志鸿([email protected])
  • 基金资助:
    国家自然科学基金(11501523)

Collaborative Filtering Recommendation Algorithm Based on User Rating and Similarity of Explicit and Implicit Interest

WU Jian-xin, ZHANG Zhi-hong   

  1. School of Information and Engineering,Zhengzhou University,Zhengzhou 450001,China
  • Received:2020-03-13 Revised:2020-06-27 Online:2021-05-15 Published:2021-05-09
  • About author:WU Jian-xin,born in 1995,postgra-duate.His main research interests include data mining and artificial intelligence.([email protected])
    ZHANG Zhi-hong,born in 1965,Ph.D,professor,is a member of China Computer Federation.His main research interests include block chain and financial big data.
  • Supported by:
    National Natural Science Foundation of China (11501523).

摘要: 协同过滤算法是推荐系统中使用最广泛的算法,其核心是利用某兴趣爱好相似的群体来为用户推荐感兴趣的信息。传统的协同过滤算法利用用户-项目评分矩阵计算相似度,通过相似度寻找用户的相似群体来进行推荐,但是由于其评分矩阵的稀疏性问题,对相似度的计算不够准确,这间接导致推荐系统的质量下降。为了缓解数据稀疏性对相似度计算的影响并提高推荐质量,提出了一种融合用户评分与用户显隐兴趣的相似度计算方法。该方法首先利用用户-项目评分矩阵计算用户评分相似度;然后根据用户基本属性与用户-项目评分矩阵得出项目隐性属性;之后综合项目类别属性、项目隐性属性、用户-项目评分矩阵和用户评分时间,得到用户显隐兴趣相似度;最后融合用户评分相似度和用户显隐兴趣相似度得到用户相似度,并以此相似度寻找用户的相似群体以进行推荐。在数据集Movielens上的实验结果表明,相比传统算法中仅使用单一的评分矩阵来计算相似度,提出的新相似度计算方法不仅能够更加准确地寻找到用户的相似群体,而且还能够提供更好的推荐质量。

关键词: 显隐兴趣, 项目隐性属性, 协同过滤, 用户基本属性, 用户评分

Abstract: Collaborative filtering algorithm is the most widely used algorithm in recommendation system.Its core is to use a group with similar interests to recommend information of interest for users.The traditional collaborative filtering algorithm uses the user item scoring matrix to calculate the similarity,and finds the similar groups of users through the similarity to recommend.However,due to the sparsity of the scoring matrix,the calculation of the similarity is not accurate enough,which indirectly leads to the degradation of the quality of the recommendation system.In order to alleviate the impact of data sparsity on the similarity calculation and improve the quality of recommendation,a similarity calculation method is proposed,which integrates user rating and user's explicit and implicit interest.This method first uses the user item scoring matrix to calculate the similarity of user's scoring,then uses the basic attribute of user and the user item scoring matrix to get the implicit attribute of project,then integrates the attribute of project category,the implicit attribute of project,the scoring matrix of user item and the scoring time of user to get the similarity of user's explicit and implicit interest,finally integrates the similarity of user's scoring and the similarity of user's explicit and implicit interest to find similar groups of users for recommendation.Experimental results on the data set Movielens show that compared with the traditional algorithm,which only uses a single scoring matrix to calculate the similarity,the new similarity calculation method can not only find similar groups of users more accurately,but also provide a better recommendation quality.

Key words: Collaborative filtering, Explicit and implicit interest, Item implicit attribute, User basic attributes, User rating

中图分类号: 

  • TP301
[1]LI M M,WANG L C.A Survey on Personalized News Recom-mendation Technology[J]. IEEE Access,2019,7(99):145861-145879.
[2]JALILI M,AHMADIAN S,IZADI M,et al.Evaluating Collaborative Filtering Recommender Algorithms:A Survey[J].IEEE Access,2018,6:74003-74024.
[3]NATARAJAN S,VAIRAVASUNDARAM S,NATARAJANS,et al.Resolving data sparsity and cold start problem in colla-borative filtering recommender system using Linked Open Data[J].Expert System with Applications,2020,149:113248.
[4]WU C H,WU F Z,QI T,et al.Reviews Meet Graphs.Enhancing User and Item Representations for Recommendation with Hierarchical Attentive Graph Neural Network[C]//EMNLP/IJCNLP.2019:4883-4892.
[5]SHI W C,WANG L J,QIN J W.User Embedding for RatingPrediction in SVD++-Based Collaborative Filtering[J].Symmetry,2020,12:121.
[6]GUO X,ZHU J H.Deep Neural Network RecommendationModel Based on User Vectorization Representation and Attention Mechanism[J].Computer Science,2019,46(8):111-115.
[7]LIU H F,HU Z,AHMAD U M,et al.A new user similarity model to improve the accuracy of collaborative filtering[J].Knowledge Based System,2014,56(Jan.):156-166.
[8]TAN Z H,HE L L.An Efficient Similarity Measure for User-Based Collaborative Filtering Recommender Systems Inspired by the Physical Resonance Principle[J].IEEE Access,2017,5:27211-27228.
[9]JIN Q B,ZHANG Y,CAI W,et al.A New Similarity Computing Model of Collaborative Filtering[J].IEEE Access,2020,8:17594-17604.
[10]WANG Y C,LIU Z.Collaborative Filtering Algorithm Based on User's Preference for Items and Attribut [J].Computer Science,2018,45(S2):422-426.
[11]LI Z L,HUANG M X,ZHANG Y.A Collaborative Filtering Al-gorithm of Calculating Similarity Based on Item Rating and Attributes[C]//Web Iinformation Systems and Applications.2017:215-218.
[12]WEI H J,DAI D H.Collaboration Filtering RecommendationAlgorithm Based on Ratings Difference and Interest Similarity[J].Computer Science,2018,45(S1):411-414,435.
[13]ZHANG L,ZHANG Z J,HE J F,et al.UR:A User-Based Collaborative Filtering Recommendation System Based on Trust Mechanism and Time Weighting[C]//2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS).2020:69-76.
[1] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[2] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[3] 孙晓寒, 张莉.
基于评分区域子空间的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace
计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062
[4] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[5] 何亦琛, 毛宜军, 谢贤芬, 古万荣.
基于点割集图分割的矩阵变换与分解的推荐算法
Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation
计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159
[6] 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩.
基于注意力机制和门控网络相结合的混合推荐系统
Hybrid Recommender System Based on Attention Mechanisms and Gating Network
计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013
[7] 董晓梅, 王蕊, 邹欣开.
面向推荐应用的差分隐私方案综述
Survey on Privacy Protection Solutions for Recommended Applications
计算机科学, 2021, 48(9): 21-35. https://doi.org/10.11896/jsjkx.201100083
[8] 詹皖江, 洪植林, 方路平, 吴哲夫, 吕跃华.
基于对抗性学习的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Adversarial Learning
计算机科学, 2021, 48(7): 172-177. https://doi.org/10.11896/jsjkx.200600077
[9] 邵超, 宋淑米.
基于信任关系下用户兴趣偏好的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on User Preference Under Trust Relationship
计算机科学, 2021, 48(6A): 240-245. https://doi.org/10.11896/jsjkx.200700113
[10] 肖诗涛, 邵蓥侠, 宋卫平, 崔斌.
面向协同过滤推荐的新型混合评分函数
Hybrid Score Function for Collaborative Filtering Recommendation
计算机科学, 2021, 48(3): 113-118. https://doi.org/10.11896/jsjkx.200900067
[11] 郝志峰, 廖祥财, 温雯, 蔡瑞初.
基于多上下文信息的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Multi-context Information
计算机科学, 2021, 48(3): 168-173. https://doi.org/10.11896/jsjkx.200700101
[12] 韩立锋, 陈莉.
融合用户属性与项目流行度的用户冷启动推荐模型
User Cold Start Recommendation Model Integrating User Attributes and Item Popularity
计算机科学, 2021, 48(2): 114-120. https://doi.org/10.11896/jsjkx.200900152
[13] 李康林, 古天龙, 宾辰忠.
多空间交互协同过滤推荐
Multi-space Interactive Collaborative Filtering Recommendation
计算机科学, 2021, 48(12): 181-187. https://doi.org/10.11896/jsjkx.201100031
[14] 朱育颉, 刘虎沉.
网上购物平台多推荐融合算法研究
Research on Multi-recommendation Fusion Algorithm of Online Shopping Platform
计算机科学, 2021, 48(11A): 232-235. https://doi.org/10.11896/jsjkx.201200010
[15] 徐兵, 弋沛玉, 王金策, 彭舰.
知识图谱嵌入的高阶协同过滤推荐系统
High-order Collaborative Filtering Recommendation System Based on Knowledge Graph Embedding
计算机科学, 2021, 48(11A): 244-250. https://doi.org/10.11896/jsjkx.210100211
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!