计算机科学 ›› 2022, Vol. 49 ›› Issue (7): 179-186.doi: 10.11896/jsjkx.210500190
金方焱1, 王秀利1,2
JIN Fang-yan1, WANG Xiu-li1,2
摘要: 金融领域的文本信息量大、价值高,尤其是其中的隐式因果关系事件包含着巨大的潜在利用价值。对金融领域文本进行隐式因果关系分析,挖掘隐式因果关系事件中隐含的重要信息,了解金融领域事件更深层的演化逻辑,进而构建金融领域知识库,对金融风险控制、风险预警等具有重要意义。为了提高金融领域中隐式因果关系事件识别的准确度,从特征挖掘的角度入手,提出了一种基于自注意力机制的融合循环注意力卷积神经网络(Recurrent Attention Convolution Neural Network,RACNN)和双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的隐式因果关系抽取方法。该方法结合了基于迭代反馈机制能提取更重要文本局部特征的RACNN、能更好地提取文本全局特征的BiLSTM以及能更深入地挖掘融合特征语义信息的自注意力机制,在SemEval-2010 Task 8数据集和金融领域数据集上进行了实验,结果表明,评估指标F1值分别达到了72.98%和75.74%,均显著优于其他对比模型。
中图分类号:
[1]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2017:5998-6008. [2]FU J L,ZHENG H L,MEI T.Look closer to see better:Recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the CVPR.Piscataway,NJ:IEEE,2017:4438-4446. [3]HENDRICKX I,KIM S N,KOZAREVA Z,et al.Semeval-2010 task 8:Multi-way classification of semantic relations between pairs of nominals [C]//Proceedings of the Workshop on Semantic Evaluations:Recent Achievements and Future Directions(SEW-2009).Stroudsburg,PA:ACL,2009:94-99. [4]SAKAJI H,MURONO R,SAKAI H,et al.Discovery of rarecausal knowledge from financial statement summaries[C]//Proceedings of 2017 IEEE Symp Series on Computational Intelligence(SSCI).Piscataway,NJ:IEEE,2017:1-7. [5]IZUMI K,SAKAJI H.Economic causal-chain search using text mining technology[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Amsterdam:Else-vier,2019:23-35. [6]CAO M Y,YANG Z H,LUO L,et al.Joint drug entities and relations extraction based on neural networks[J].Journal of Computer Research and Development,2019,56(7):1432-1440. [7]XU J H,ZUO W L,LIANG S N,et al.Causal relation extraction based on graph attention networks[J].Journal of Computer Research and Development,2020,57(1):159-174. [8]LI Z N,LI Q,ZOU X T,et al.Causality extraction based on self-attentive BiLSTM-CRF with transferred embeddings[J].Neurocomputing,2019,423:207-219. [9]ZHONG J,YU L,TIAN S W,et al.Causal relation extraction of uyghur emergency events based on cascaded model[J].Acta Automatica Sinica,2014,40(4):771-779. [10]ZHOU P,SHI W,TIAN J,et al.Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the ACL.Stroudsburg,PA:ACL,2016:207-212. [11]TIAN S W,ZHOU X F,YU L,et al.Causal relation extraction of uyghur events based on bidirectional long short-term memory model[J].Journal of Electronics and Information Technology,2018,40(1):200-208. [12]NING S M,TENG F,LI T R.Muti-channel self-attention mecha-nism for relation extraction in clinical records[J].Chinese Journal of Computers,2020,43(5):916-929. [13]WANG J,SHI C H,ZHANG J,et al.Document-level event temporal relation extraction with context information[J].Journal of Computer Research and Development,2021,58(11):2475. [14]TOURILLE J,FERRET O,NEVEOL A,et al.Neural architecture for temporal relation extraction:A bi-lstm approach for detecting narrative containers[C]//Proceedings of the 55th AnnualMeeting of the ACL.Stroudsburg,PA:ACL,2017:224-230. [15]FENG X C,HUANG L F,TANG D Y,et al.A language-independent neural network for event detection[C]//Proceedings of the 54th Annual Meeting of the ACL.Stroudsburg,PA:ACL,2016:66-71. [16]GUO F Y,HE R F,DANG J W.Implicit discourse relation reco-gnition via a BiLSTM-CNN architecture with dynamic chunk-based max pooling[J].IEEE Access,2019,7:169281-169292. [17]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision(ECCV).Berlin,Germany:Sprin-ger,2018:3-19. [18]HOCHREITER S,SCHMIDHUBER J.Long short-term me-mory[J].Neural Computation,1997,9(8):1735-1780. [19]PENNINGTON J,SOCHER R,MANNING C.Glove:Globalvectors for word representation[C]//Proceedings of Conference on the 2014 Empirical Methods in Natural Language Processing(EMNLP).Stroudsburg,PA:ACL,2014:1532-1543. [20]LI S,ZHAO Z,HU R F,et al.Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the ACL.Stroudsburg,PA:ACL,2018:138-143. [21]CAO P F,CHEN Y B,LIU K,et al.Adversarial transfer lear-ning for Chinese named entity recognition with self-attention mechanism[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing(EMNLP).Stroudsburg,PA:ACL,2018:182-192. [22]LIU X,OU J,SONG Y,et al.On the Importance of Word and Sentence Representation Learning in Implicit Discourse Relation Classification[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence.Amsterdam:Elsevier,2020:3830-3836. [23]GUO F,HE R,DANG J,et al.Working memory-driven neural networks with a novel knowledge enhancement paradigm for implicit discourse relation recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:7822-7829. [24]JIANG D,HE J.Tree Framework With BERT Word Embedding for the Recognition of Chinese Implicit Discourse Relations[J].IEEE Access,2020,8:162004-162011. [25]FAN Z W,ZHANG M,LI Z H.BiLSTM-based Implicit Discourse Relation Classification Combining Self-attention Mechanism and Syntactic Information[J].Computer Science,2019,46(5):214-220. |
[1] | 张嘉淏, 刘峰, 齐佳音. 一种基于Bottleneck Transformer的轻量级微表情识别架构 Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer 计算机科学, 2022, 49(6A): 370-377. https://doi.org/10.11896/jsjkx.210500023 |
[2] | 赵丹丹, 黄德根, 孟佳娜, 董宇, 张攀. 基于BERT-GRU-ATT模型的中文实体关系分类 Chinese Entity Relations Classification Based on BERT-GRU-ATT 计算机科学, 2022, 49(6): 319-325. https://doi.org/10.11896/jsjkx.210600123 |
[3] | 潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松. 基于交互注意力图卷积网络的方面情感分类 Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification 计算机科学, 2022, 49(3): 294-300. https://doi.org/10.11896/jsjkx.210100180 |
[4] | 丁锋, 孙晓. 基于注意力机制和BiLSTM-CRF的消极情绪意见目标抽取 Negative-emotion Opinion Target Extraction Based on Attention and BiLSTM-CRF 计算机科学, 2022, 49(2): 223-230. https://doi.org/10.11896/jsjkx.210100046 |
[5] | 胡艳丽, 童谭骞, 张啸宇, 彭娟. 融入自注意力机制的深度学习情感分析方法 Self-attention-based BGRU and CNN for Sentiment Analysis 计算机科学, 2022, 49(1): 252-258. https://doi.org/10.11896/jsjkx.210600063 |
[6] | 徐少伟, 秦品乐, 曾建朝, 赵致楷, 高媛, 王丽芳. 基于多级特征和全局上下文的纵膈淋巴结分割算法 Mediastinal Lymph Node Segmentation Algorithm Based on Multi-level Features and Global Context 计算机科学, 2021, 48(6A): 95-100. https://doi.org/10.11896/jsjkx.200700067 |
[7] | 王习, 张凯, 李军辉, 孔芳, 张熠天. 联合自注意力和循环网络的图像标题生成 Generation of Image Caption of Joint Self-attention and Recurrent Neural Network 计算机科学, 2021, 48(4): 157-163. https://doi.org/10.11896/jsjkx.200300146 |
[8] | 周小诗, 张梓葳, 文娟. 基于神经网络机器翻译的自然语言信息隐藏 Natural Language Steganography Based on Neural Machine Translation 计算机科学, 2021, 48(11A): 557-564. https://doi.org/10.11896/jsjkx.210100015 |
[9] | 张鹏飞, 李冠宇, 贾彩燕. 面向自然语言推理的基于截断高斯距离的自注意力机制 Truncated Gaussian Distance-based Self-attention Mechanism for Natural Language Inference 计算机科学, 2020, 47(4): 178-183. https://doi.org/10.11896/jsjkx.190600149 |
[10] | 康雁,崔国荣,李浩,杨其越,李晋源,王沛尧. 融合自注意力机制和多路金字塔卷积的软件需求聚类算法 Software Requirements Clustering Algorithm Based on Self-attention Mechanism and Multi- channel Pyramid Convolution 计算机科学, 2020, 47(3): 48-53. https://doi.org/10.11896/jsjkx.190700146 |
[11] | 王启发, 王中卿, 李寿山, 周国栋. 基于交叉注意力机制和新闻正文的评论情感分类 Comment Sentiment Classification Using Cross-attention Mechanism and News Content 计算机科学, 2020, 47(10): 222-227. https://doi.org/10.11896/jsjkx.190900173 |
[12] | 张义杰, 李培峰, 朱巧明. 基于自注意力机制的事件时序关系分类方法 Event Temporal Relation Classification Method Based on Self-attention Mechanism 计算机科学, 2019, 46(8): 244-248. https://doi.org/10.11896/j.issn.1002-137X.2019.08.040 |
[13] | 凡子威, 张民, 李正华. 基于BiLSTM并结合自注意力机制和句法信息的隐式篇章关系分类 BiLSTM-based Implicit Discourse Relation Classification Combining Self-attention Mechanism and Syntactic Information 计算机科学, 2019, 46(5): 214-220. https://doi.org/10.11896/j.issn.1002-137X.2019.05.033 |
|