Computer Science ›› 2021, Vol. 48 ›› Issue (8): 60-65.doi: 10.11896/jsjkx.200700008
• Database & Big Data & Data Science • Previous Articles Next Articles
WANG Sheng, ZHANG Yang-sen, CHEN Ruo-yu, XIANG Ga
CLC Number:
[1]LI X.Research on paragraph retrieval technology for questionanswering system[D].Chengdu:University of Science and Technology of China,2010. [2]SALTON G,BUCKLEY C.Term-weighting approaches in automatic text retrieval[J].Information Processing & Management,1988,24(5):513-523. [3]SONG F,CROFT W B.A general language model for information retrieval[C]//Proceedings of the Eighth International Conference on Information and Knowledge Management.1999:316-321. [4]LE Q,MIKOLOV T.Distributed representations of sentencesand documents[C]//International Conference on Machine Learning.2014:1188-1196. [5]LOGESWARAN L,LEE H.An efficient framework for learning sentence representations[J].arXiv:1803.02893,2018. [6]CER D,YANG Y,KONG S,et al.Universal sentence encoder[J].arXiv:1803.11175,2018. [7]YIN W,SCHÜTZE H,XIANG B,et al.Abcnn:Attention-based convolutional neural network for modeling sentence pairs[J].Transactions of the Association for Computational Linguistics,2016,4:259-272. [8]CHEN Q,ZHU X,LING Z,et al.Enhanced lstm for natural language inference[J].arXiv:1609.06038,2016. [9]WANG Z,HAMZA W,FLORIAN R.Bilateral multi-perspective matching for natural language sentences[J]. arXiv:1702.03814,2017. [10]RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding with unsupervised learning[R/OL].Technical Report,OpenAI,2018.https://openai.com/blog/language-unsupervised/. [11]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training ofdeep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [12]RADFORD A,WU J,CHILD R,et al.Language models are unsupervised multitask learners[J].OpenAI Blog,2019,1(8):9. [13]SUN Y,WANG S,LI Y,et al.Ernie:Enhanced representation through knowledge integration[J].arXiv:1904.09223,2019. [14]RAFFEL C,SHAZEER N,ROBERTS A,et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].arXiv:1910.10683,2019. [15]HU W,DANG A,TAN Y.A Survey of State-of-the-Art Short Text Matching Algorithms[C]//International Conference on Data Mining and Big Data.Singapore:Springer,2019:211-219. [16]SAKATA W,SHIBATA T,TANAKA R,et al.FAQ retrieval using query-question similarity and BERT-based query-answer relevance[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:1113-1116. [17]WU Y,WANG R J.Application of BERT-Based Semantic Ma-tching Algorithm in Question Answering System[J].Instrumentation Technology,2020(6):19-22,30. [18]WANG N Z.Research on improved text representation model based on BERT[D].Southwest University.2019. [19]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [20]ZHU C,CHENG Y,GAN Z,et al.Freelb:Enhanced adversarial training for natural language understanding[C]//International Conference on Learning Representations.2019. [21]YAN J,BRACEWELL D B,REN F,et al.A semantic analyzer for aiding emotion recognition in Chinese[C]//International Conference on Intelligent Computing.Berlin,Heidelberg:Springer,2006:893-901. [22]SONG Y,SHI S,LI J,et al.Directional skip-gram:Explicitlydistinguishing left and right context for word embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 2 (Short Papers).2018:175-180. [23]LIU X,CHEN Q,DENG C,et al.Lcqmc:A large-scale chinese question matching corpus[C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:1952-1962. [24]ZHANG X,LU W,ZHANG G,et al.Chinese Sentence Semantic Matching Based on Multi-Granularity Fusion Model[C]//Paci-fic-Asia Conference on Knowledge Discovery and Data Mining.Cham:Springer,2020:246-257. [25]LIU W,ZHOU P,ZHAO Z,et al.K-BERT:Enabling Language Representation with Knowledge Graph[C]//AAAI.2020:2901-2908. [26]CHEN J,CAO C,JIANG X.SiBert:Enhanced Chinese Pre-trained Language Model with Sentence Insertion[C]//Procee-dings of The 12th Language Resources and Evaluation Confe-rence.2020:2405-2412. [27]MENG Y,WU W,WANG F,et al.Glyce:Glyph-vectors forChinese character representations[C]//Advances in Neural Information Processing Systems.2019:2746-2757. [28]CUI Y,CHE W,LIU T,et al.Pre-training with whole word masking for chinese bert[J].arXiv:1906.08101,2019. [29]KOEHN P.Statistical significance tests for machine translation evaluation[C]//Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing.2004:388-395. |
[1] | LYU Xiao-feng, ZHAO Shu-liang, GAO Heng-da, WU Yong-liang, ZHANG Bao-qi. Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network [J]. Computer Science, 2022, 49(9): 92-100. |
[2] | CAO Xiao-wen, LIANG Mei-yu, LU Kang-kang. Fine-grained Semantic Reasoning Based Cross-media Dual-way Adversarial Hashing Learning Model [J]. Computer Science, 2022, 49(9): 123-131. |
[3] | ZENG Zhi-xian, CAO Jian-jun, WENG Nian-feng, JIANG Guo-quan, XU Bin. Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism [J]. Computer Science, 2022, 49(7): 106-112. |
[4] | HOU Hong-xu, SUN Shuo, WU Nier. Survey of Mongolian-Chinese Neural Machine Translation [J]. Computer Science, 2022, 49(1): 31-40. |
[5] | LUO Yue-tong, WANG Tao, YANG Meng-nan, ZHANG Yan-kong. Historical Driving Track Set Based Visual Vehicle Behavior Analytic Method [J]. Computer Science, 2021, 48(9): 86-94. |
[6] | LIU Li-bo, GOU Ting-ting. Cross-modal Retrieval Combining Deep Canonical Correlation Analysis and Adversarial Learning [J]. Computer Science, 2021, 48(9): 200-207. |
[7] | TANG Shi-zheng, ZHANG Yan-feng. DragDL:An Easy-to-Use Graphical DL Model Construction System [J]. Computer Science, 2021, 48(8): 220-225. |
[8] | ZHAN Wan-jiang, HONG Zhi-lin, FANG Lu-ping, WU Zhe-fu, LYU Yue-hua. Collaborative Filtering Recommendation Algorithm Based on Adversarial Learning [J]. Computer Science, 2021, 48(7): 172-177. |
[9] | LYU Le-bin, LIU Qun, PENG Lu, DENG Wei-bin , WANG Chong-yu. Text Matching Fusion Model Combining Multi-granularity Information [J]. Computer Science, 2021, 48(6): 196-201. |
[10] | ZHAN Rui, LEI Yin-jie, CHEN Xun-min, YE Shu-han. Street Scene Change Detection Based on Multiple Difference Features Network [J]. Computer Science, 2021, 48(2): 142-147. |
[11] | WU Yu, LI Zhou-jun. Survey on Retrieval-based Chatbots [J]. Computer Science, 2021, 48(12): 278-285. |
[12] | HUANG Xin, LEI Gang, CAO Yuan-long, LU Ming-ming. Review on Interactive Question Answering Techniques Based on Deep Learning [J]. Computer Science, 2021, 48(12): 286-296. |
[13] | ZHANG Yu-shuai, ZHAO Huan, LI Bo. Semantic Slot Filling Based on BERT and BiLSTM [J]. Computer Science, 2021, 48(1): 247-252. |
[14] | ZHANG Yun-fan,ZHOU Yu,HUANG Zhi-qiu. Semantic Similarity Based API Usage Pattern Recommendation [J]. Computer Science, 2020, 47(3): 34-40. |
[15] | MA Xiao-hui, JIA Jun-zhi, ZHOU Xiang-zhen, YAN Jun-ya. Semantic Similarity-based Method for Sentiment Classification [J]. Computer Science, 2020, 47(11): 275-279. |
|