Time-Rescaling of Dirac Dynamics: Shortcuts to Adiabaticity in Ion Traps and Weyl Semimetals
Abstract
:1. Introduction
2. Preliminaries
2.1. Relativistic Quantum Mechanics: The Dirac Equation
2.2. Time-Rescaling of Schrödinger Dynamics
3. Time-Rescaling of Dirac Dynamics
Absorbing the Time-Dependence into the Potentials
4. Dirac Dynamics in Laser Ion-Traps
A Simple Demonstration
5. Time-Rescaling Weyl Semimetals: Shortcuts to Adiabatic Pumping
5.1. Floquet Theory and Time-Rescaling
5.2. Shortcut to Adiabatic Creation of Weyl Points
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Shortcuts to Adiabaticity from Time Rescaling in Scale Invariant Problems
Appendix A.1. Classical Hamiltonian Dynamics
Appendix A.2. Scale-Invariant Schrödinger Dynamics
References
- Born, M. Das Adiabatenprinzip in der Quantenmechanik. Z. Phys. 1927, 40, 167. [Google Scholar] [CrossRef]
- Messiah, A. Quantum Mechanics; John Wiley & Sons: Amsterdam, The Netherlands, 1966; Volume 2. [Google Scholar]
- Nenciu, G. On the adiabatic theorem of quantum mechanics. J. Phys. A Math. Gen. 1980, 13, L15–L18. [Google Scholar] [CrossRef]
- Nenciu, G. On the adiabatic limit for Dirac particles in external fields. Commun. Math. Phys. 1980, 76, 117. [Google Scholar] [CrossRef]
- Nenciu, G. Adiabatic theorem and spectral concentration. Commun. Math. Phys. 1981, 82, 121. [Google Scholar] [CrossRef]
- Albash, T.; Lidar, D.A. Adiabatic quantum computation. Rev. Mod. Phys. 2018, 90, 015002. [Google Scholar] [CrossRef] [Green Version]
- Young, K.C.; Sarovar, M.; Blume-Kohout, R. Error Suppression and Error Correction in Adiabatic Quantum Computation: Techniques and Challenges. Phys. Rev. X 2013, 3, 041013. [Google Scholar] [CrossRef] [Green Version]
- Gardas, B.; Deffner, S. Quantum fluctuation theorem for error diagnostics in quantum annealers. Sci. Rep. 2018, 8, 17191. [Google Scholar] [CrossRef]
- Demirplak, M.; Rice, S.A. Adiabatic Population Transfer with Control Fields. J. Chem. Phys. A 2003, 107, 9937. [Google Scholar] [CrossRef]
- Demirplak, M.; Rice, S.A. Assisted adiabatic passage revisited. J. Phys. Chem. B 2005, 109, 6838. [Google Scholar] [CrossRef]
- Berry, M. Transitionless quantum driving. J. Phys. A Math. Theor. 2009, 42, 365303. [Google Scholar] [CrossRef] [Green Version]
- Del Campo, A. Shortcuts to Adiabaticity by Counterdiabatic Driving. Phys. Rev. Lett. 2013, 111, 100502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deffner, S.; Jarzynski, C.; del Campo, A. Classical and quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X 2014, 4, 021013. [Google Scholar] [CrossRef] [Green Version]
- Masuda, S.; Nakamura, K. Fast-forward of adiabatic dynamics in quantum mechanics. Proc. R. Soc. A 2010, 466, 1135. [Google Scholar] [CrossRef]
- Masuda, S.; Nakamura, K. Acceleration of adiabatic quantum dynamics in electromagnetic fields. Phys. Rev. A 2011, 84, 043434. [Google Scholar] [CrossRef]
- Masuda, S.; Rice, S.A. Fast-Forward Assisted STIRAP. J. Phys. Chem. A 2015, 119, 3479. [Google Scholar] [CrossRef] [Green Version]
- Masuda, S.; Nakamura, K.; Nakahara, M. Fast-forward scaling theory for phase imprinting on a BEC: Creation of a wave packet with uniform momentum density and loading to Bloch states without disturbance. New J. Phys. 2018, 20, 025008. [Google Scholar] [CrossRef]
- Chen, X.; Ruschhaupt, A.; Schmidt, S.; del Campo, A.; Guéry-Odelin, D.; Muga, J.G. Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity. Phys. Rev. Lett. 2010, 104, 063002. [Google Scholar] [CrossRef]
- Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Hamiltonian engineering via invariants and dynamical algebra. Phys. Rev. A 2014, 89, 043408. [Google Scholar] [CrossRef] [Green Version]
- Kiely, A.; McGuinness, J.P.L.; Muga, J.G.; Ruschhaupt, A. Fast and stable manipulation of a charged particle in a Penning trap. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 075503. [Google Scholar] [CrossRef] [Green Version]
- Jarzynski, C.; Deffner, S.; Patra, A.; Subaşı, Y.B.U. Fast forward to the classical adiabatic invariant. Phys. Rev. E 2017, 95, 032122. [Google Scholar] [CrossRef] [Green Version]
- Torrontegui, E.; Ibáñez, S.; Martínez-Garaot, S.; Modugno, M.; del Campo, A.; Guéry-Odelin, D.; Ruschhaupt, A.; Chen, X.; Muga, J.G. Shortcuts to Adiabaticity. Adv. At. Mol. Opt. Phys. 2013, 62, 117. [Google Scholar] [CrossRef] [Green Version]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Del Campo, A.; Kim, K. Focus on Shortcuts to Adiabaticity. New J. Phys. 2019, 21, 050201. [Google Scholar] [CrossRef]
- Deffner, S.; Bonança, M.V.S. Thermodynamic control—An old paradigm with new applications. EPL (Europhys. Lett.) 2020, 131, 20001. [Google Scholar] [CrossRef]
- Alipour, S.; Chenu, A.; Rezakhani, A.T.; del Campo, A. Shortcuts to Adiabaticity in Driven Open Quantum Systems: Balanced Gain and Loss and Non-Markovian Evolution. Quantum 2020, 4, 336. [Google Scholar] [CrossRef]
- Patra, A.; Jarzynski, C. Classical and Quantum Shortcuts to Adiabaticity in a Tilted Piston. J. Phys. Chem. B 2017, 121, 3403–3411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, A.; Jarzynski, C. Shortcuts to adiabaticity using flow fields. New J. Phys. 2017, 19, 125009. [Google Scholar] [CrossRef]
- Iram, S.; Dolson, E.; Chiel, J.; Pelesko, J.; Krishnan, N.; Güngör, Ö.; Kuznets-Speck, B.; Deffner, S.; Ilker, E.; Scott, J.G.; et al. Controlling the speed and trajectory of evolution with counterdiabatic driving. Nat. Phys. 2020. [Google Scholar] [CrossRef]
- Deffner, S. Shortcuts to adiabaticity: Suppression of pair production in driven Dirac dynamics. New J. Phys. 2015, 18, 012001. [Google Scholar] [CrossRef]
- Fan, Q.Z.; Cheng, X.H.; Chen, X. Counter-diabatic driving for Dirac dynamics. In Young Scientists Forum 2017; Zhuang, S., Chu, J., Pan, J.W., Eds.; International Society for Optics and Photonics, SPIE: Philadelphia, PA, USA, 2018; Volume 10710, pp. 42–47. [Google Scholar] [CrossRef]
- Song, X.K.; Deng, F.G.; Lamata, L.; Muga, J.G. Robust state preparation in quantum simulations of Dirac dynamics. Phys. Rev. A 2017, 95, 022332. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. The quantum theory of the electron. Proc. R. Soc. A 1928, 117, 778. [Google Scholar] [CrossRef] [Green Version]
- Thaller, B. The Dirac Equation; Springer: Berlin, Germany, 1956. [Google Scholar]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory (Frontiers in Physics); Westview Press: Boulder, CO, USA, 1995. [Google Scholar]
- Pickl, P.; Dürr, D. On Adiabatic Pair Creation. Commun. Math. Phys. 2008, 282, 161. [Google Scholar] [CrossRef] [Green Version]
- Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A.D. Landau-Zener-Stückelberg interferometry in pair production from counterpropagating lasers. Phys. Rev. A 2012, 86, 032118. [Google Scholar] [CrossRef] [Green Version]
- Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A.D. Resonantly Enhanced Pair Production in a Simple Diatomic Model. Phys. Rev. Lett. 2013, 110, 013002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A.D. Enhanced Schwinger pair production in many-centre systems. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 175002. [Google Scholar] [CrossRef] [Green Version]
- Fillion-Gourdeau, F.; MacLean, S. Time-dependent pair creation and the Schwinger mechanism in graphene. Phys. Rev. B 2015, 92, 035401. [Google Scholar] [CrossRef]
- Villamizar, D.V.; Duzzioni, E.I. Quantum speed limit for a relativistic electron in a uniform magnetic field. Phys. Rev. A 2015, 92, 042106. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Peano, V.; Marquardt, F. Optomechanical Dirac physics. New J. Phys. 2015, 17, 023025. [Google Scholar] [CrossRef] [Green Version]
- Deffner, S.; Saxena, A. Quantum work statistics of charged Dirac particles in time-dependent fields. Phys. Rev. E 2015, 92, 032137. [Google Scholar] [CrossRef] [Green Version]
- Wehling, T.O.; Black-Schaffer, A.M.; Balatsky, A.V. Dirac materials. Adv. Phys. 2014, 63, 1. [Google Scholar] [CrossRef] [Green Version]
- Faisal, F.H.M. Adiabatic solutions of a Dirac equation of a new class of quasi-particles and high harmonic generation from them in an intense electromagnetic field. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 111001. [Google Scholar] [CrossRef]
- Bernardo, B.d.L. Time-rescaled quantum dynamics as a shortcut to adiabaticity. Phys. Rev. Res. 2020, 2, 013133. [Google Scholar] [CrossRef] [Green Version]
- De Castro, A.S. Bound states by a pseudoscalar Coulomb potential in one-plus-one dimensions. Phys. Lett. A 2003, 318, 40. [Google Scholar] [CrossRef] [Green Version]
- Solomon, D. An exact solution of the Dirac equation for a time-dependent Hamiltonian in 1-1 dimension space-time. Can. J. Phys. 2010, 88, 137. [Google Scholar] [CrossRef] [Green Version]
- Haouat, S.; Chetouani, L. The (1+1)-Dimensional Dirac Equation with Pseudoscalar Potentials: Path Integral Treatment. Int. J. Theo. Phys. 2007, 46, 1528. [Google Scholar] [CrossRef]
- Haouat, S.; Chetouani, L. The (1+1)-dimensional Dirac equation with pseudoscalar potentials: Quasi-classical approximation. Phys. Scri. 2008, 78, 065005. [Google Scholar] [CrossRef]
- Gardas, B.; Deffner, S.; Saxena, A. Repeatability of measurements: Non-Hermitian observables and quantum Coriolis force. Phys. Rev. A 2016, 94, 022121. [Google Scholar] [CrossRef] [Green Version]
- Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281–324. [Google Scholar] [CrossRef] [Green Version]
- Lamata, L.; León, J.; Schätz, T.; Solano, E. Dirac Equation and Quantum Relativistic Effects in a Single Trapped Ion. Phys. Rev. Lett. 2007, 98, 253005. [Google Scholar] [CrossRef] [Green Version]
- Gerritsma, R.; Kirchmair, G.; Zähringer, F.; Solano, E.; Blatt, R.; Roos, C.F. Quantum simulation of the Dirac equation. Nature 2010, 463, 68–71. [Google Scholar] [CrossRef] [Green Version]
- Muga, J.G.; Simón, M.A.; Tobalina, A. How to drive a Dirac system fast and safe. New J. Phys. 2016, 18, 021005. [Google Scholar] [CrossRef] [Green Version]
- Floquet, G. Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. l’École Norm. Supérieure 1883, 12, 47–88. [Google Scholar] [CrossRef] [Green Version]
- Lindner, N.H.; Refael, G.; Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 2011, 7, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Shirley, J.H. Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time. Phys. Rev. 1965, 138, B979–B987. [Google Scholar] [CrossRef]
- Dittrich, T.; Hänggi, P.; Ingold, G.L.; Kramer, B.; Schön, G.; Zwerger, W. Quantum Transport and Dissipation; Wiley-VCH: Weinheim, Germany, 1998. [Google Scholar]
- Ho, D.Y.H.; Gong, J. Quantized Adiabatic Transport In Momentum Space. Phys. Rev. Lett. 2012, 109, 010601. [Google Scholar] [CrossRef] [Green Version]
- Bomantara, R.W.; Raghava, G.N.; Zhou, L.; Gong, J. Floquet topological semimetal phases of an extended kicked Harper model. Phys. Rev. E 2016, 93, 022209. [Google Scholar] [CrossRef] [Green Version]
- Bomantara, R.W.; Gong, J. Generating controllable type-II Weyl points via periodic driving. Phys. Rev. B 2016, 94, 235447. [Google Scholar] [CrossRef] [Green Version]
- Carinena, J.F.; Ibort, L.A.; Lacomba, E.A. Time Scaling as an Infinitesimal Canonical Transformation. Celest. Mech. 1988, 42, 201–213. [Google Scholar] [CrossRef]
- Goldstein, H. Classical Mechanics; Addison-Wesley: Reading, MA, USA, 1980. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roychowdhury, A.; Deffner, S. Time-Rescaling of Dirac Dynamics: Shortcuts to Adiabaticity in Ion Traps and Weyl Semimetals. Entropy 2021, 23, 81. https://doi.org/10.3390/e23010081
Roychowdhury A, Deffner S. Time-Rescaling of Dirac Dynamics: Shortcuts to Adiabaticity in Ion Traps and Weyl Semimetals. Entropy. 2021; 23(1):81. https://doi.org/10.3390/e23010081
Chicago/Turabian StyleRoychowdhury, Agniva, and Sebastian Deffner. 2021. "Time-Rescaling of Dirac Dynamics: Shortcuts to Adiabaticity in Ion Traps and Weyl Semimetals" Entropy 23, no. 1: 81. https://doi.org/10.3390/e23010081
APA StyleRoychowdhury, A., & Deffner, S. (2021). Time-Rescaling of Dirac Dynamics: Shortcuts to Adiabaticity in Ion Traps and Weyl Semimetals. Entropy, 23(1), 81. https://doi.org/10.3390/e23010081