Closing Editorial: Causal Relativistic Hydrodynamics for Viscous Fluids
Funding
Conflicts of Interest
References
- Rezzolla, L.; Zanotti, O. Relativistic Hydrodynamics; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Eckart, C. The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid. Phys. Rev. 1940, 58, 919. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- Hiscock, W.; Lindblom, L. Stability and Causality in Dissipative Relativistic Fluids. Ann. Phys. 1983, 151, 466. [Google Scholar] [CrossRef]
- Yagi, K.; Hatsuda, T.; Miake, Y. Quark-Gluon Plasma, from Big Bang to Little Bang; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Romatschke, P.; Romatschke, U. Relativistic Fluid Dynamics In and Out of Equilibrium and Applications to Relativistic Nuclear Collisions; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Rocha, G.; Wagner, D.; Denicol, G.; Noronha, J.; Rischke, D. Theories of Relativistic Dissipative Fluid Dynamics. Entropy 2024, 26, 189. [Google Scholar] [CrossRef]
- Denicol, G.; Rischke, D. Microscopic Foundations of Relativistic Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Yahalom, A. A Fluid Perspective of Relativistic Quantum Mechanics. Entropy 2023, 25, 1497. [Google Scholar] [CrossRef]
- Gavassino, L. Relativistic Heat Conduction in the Large-Flux Regime. Entropy 2024, 26, 147. [Google Scholar] [CrossRef]
- Israel, W.; Stewart, J.M. Progress in relativistic thermodynamics and electrodynamics of continuous media. In General Relativity and Gravitation; Held, A., Ed.; Plenum: New York, NY, USA, 1980; Volume 2, p. 491. [Google Scholar]
- Granese, N.M.; Kandus, A.; Calzetta, E. Field Theory Approaches to Relativistic Hydrodynamics. Entropy 2022, 24, 1790. [Google Scholar] [CrossRef]
- Calzetta, E.; Hu, B.L. Nonequilibrium Quantum Field Theory; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Carrington, M.; Kunstatter, G.; Phillips, C.; Rubio, M. Isotropization of a Rotating and Longitudinally Expanding φ4 Scalar System. Entropy 2022, 24, 1612. [Google Scholar] [CrossRef]
- Montes, P.; Rubio, M.; Reula, O. Numerical simulations of divergence-type theories for conformal dissipative fluids. Phys. Rev. D 2023, 107, 103041. [Google Scholar] [CrossRef]
- Carrington, M.; Mrowczynski, S. The earliest phase of relativistic heavy-ion collisions. Acta Phys. Pol. 2024, 55, 4-A3. [Google Scholar] [CrossRef]
- Carrington, M.; Mrowczynski, S.; Ollitrault, J.-Y. Hydrodynamic-like behaviour of glasma. arXiv 2024, arXiv:2406.14463v2. [Google Scholar]
- Mirón-Granese, N.; Calzetta, E. Primordial Gravitational Waves Amplification from Causal Fluids. Phys. Rev. D 2018, 97, 023517. [Google Scholar] [CrossRef]
- Mirón-Granese, N. Relativistic Viscous Effects on the Primordial Gravitational Waves Spectrum. J. Cosmol. Astropart. Phys. 2021, 2021, 008. [Google Scholar] [CrossRef]
- Mirón-Granese, N.; Calzetta, E.; Kandus, A. Primordial Weibel instability. J. Cosmol. Astropart. Phys. 2022, 2022, 028. [Google Scholar] [CrossRef]
- Gavassino, L. Mapping GENERIC Hydrodynamics into Carter’s Multifluid Theory. Symmetry 2024, 16, 78. [Google Scholar] [CrossRef]
- Wagner, D.; Gavassino, L. The regime of applicability of Israel-Stewart hydrodynamics. Phys. Rev. D 2024, 109, 016019. [Google Scholar] [CrossRef]
- Gavassino, L.; Disconzi, M.; Noronha, J. Universality Classes of Relativistic Fluid Dynamics: Foundations. Phys. Rev. Lett. 2024, 132, 222302. [Google Scholar] [CrossRef]
- Gavassino, L.; Disconzi, M.; Noronha, J. Universality classes of relativistic fluid dynamics: Applications. Phys. Rev. D 2024, 132, 096041. [Google Scholar] [CrossRef]
- Denicol, G.S.; Noronha, J. Spectrum of the Boltzmann collision operator for λϕ4 theory in the classical regime. Phys. Lett. B 2024, 850, 138487. [Google Scholar] [CrossRef]
- Ambruş, V.; Molnár, E. High-order Shakhov-like extension of the relaxation time approximation in relativistic kinetic theory. arXiv 2024, arXiv:2401.04017. [Google Scholar] [CrossRef]
- Hu, J. Full-order mode analysis within a mutilated relaxation time approximation. arXiv 2023, arXiv:2310.05606. [Google Scholar]
- Hu, J. Relaxation time approximation revisited and pole/cut structure in retarded correlators. arXiv 2024, arXiv:2409.05131. [Google Scholar]
- Dash, D.; Bhadury, S.; Jaiswal, S.; Jaiswal, A. Extended relaxation time approximation and relativistic dissipative hydrodynamics. Phys. Lett. B 2022, 831, 13720. [Google Scholar] [CrossRef]
- Dash, D.; Bhadury, S.; Jaiswal, S.; Jaiswal, A. Relativistic second-order viscous hydrodynamics from kinetic theory with extended relaxation-time approximation. Phys. Rev. C 2023, 108, 064913. [Google Scholar] [CrossRef]
- Bhattacharyya, T. Non-extensive Boltzmann Transport Equation: The Relaxation Time Approximation and Beyond. Physica A 2023, 624, 128910. [Google Scholar] [CrossRef]
- Moore, G. Hydrodynamics as vs→c. arXiv 2024, arXiv:2404.01968v2. [Google Scholar] [CrossRef]
- Kandus, A.; Calzetta, E. Propagation speeds of relativistic conformal particles from a generalized relaxation time approximation. Entropy 2024, 26, 927. [Google Scholar] [CrossRef]
- Gavassino, L.; Disconzi, M.; Noronha, J. Dispersion relations alone cannot guarantee causality. Phys. Rev. Lett. 2024, 132, 162301. [Google Scholar] [CrossRef]
- Hoult, R.; Kovtun, P. Causality and classical dispersion relations. Phys. Rev. D 2024, 109, 046018. [Google Scholar] [CrossRef]
- Wang, D.-L.; Pu, S. Stability and causality criteria in linear mode analysis: Stability means causality. Phys. Rev. D 2024, 109, L031504. [Google Scholar] [CrossRef]
- Gavassino, L.; Mullins, N.; Hippert, M. Consistent inclusion of fluctuations in first-order causal and stable relativistic hydrodynamics. Phys. Rev. D 2024, 109, 125002. [Google Scholar] [CrossRef]
- Denicol, G.; Noronha, J. Stochastic fluctuations and the relaxation time in transient relativistic fluids. arXiv 2024, arXiv:2406.15569. [Google Scholar]
- Bhattacharyya, S.; Mitra, S.; Roy, S.; Singh, R. Field redefinition and its impact in relativistic hydrodynamics. arXiv 2024, arXiv:2409.15387. [Google Scholar]
- Bhattacharyya, S.; Mitra, S.; Roy, S. Causality and Stability in relativistic hydrodynamic theory—A choice to be endured. Phys. Lett. B 2024, 856, 138918. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Mitra, S.; Roy, S.; Singh, R. Relativistic fluid dynamics in a ‘hydro’ frame. arXiv 2024, arXiv:2410.19015. [Google Scholar]
- Carrington, M.; Rheban, A. Perturbative and nonperturbative Kolmogorov turbulence in a gluon plasma. Eur. Phys. J. C 2011, 71, 1787. [Google Scholar] [CrossRef]
- Eyink, G.; Drivas, T. Cascades and Dissipative Anomalies in Relativistic Fluid Turbulence. Phys. Rev. X 2018, 8, 011023. [Google Scholar] [CrossRef]
- Calzetta, E. Fully developed relativistic turbulence. Phys. Rev. D 2021, 103, 056018. [Google Scholar] [CrossRef]
- Calzetta, E. Field Theory of Non-Newtonian Turbulence. arXiv 2024, arXiv:2409.03150v1. [Google Scholar]
- Micha, R.; Tkachev, I. Relativistic Turbulence: A Long Way from Preheating to Equilibrium. Phys. Rev. Lett. 2003, 90, 121301. [Google Scholar] [CrossRef]
- Micha, R.; Tkachev, I. Turbulent thermalization. Phys. Rev. D 2004, 70, 043538. [Google Scholar] [CrossRef]
- Graña, M.; Calzetta, E. Reheating and turbulence. Phys. Rev. D 2002, 65, 063522. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calzetta, E. Closing Editorial: Causal Relativistic Hydrodynamics for Viscous Fluids. Entropy 2024, 26, 1001. https://doi.org/10.3390/e26121001
Calzetta E. Closing Editorial: Causal Relativistic Hydrodynamics for Viscous Fluids. Entropy. 2024; 26(12):1001. https://doi.org/10.3390/e26121001
Chicago/Turabian StyleCalzetta, Esteban. 2024. "Closing Editorial: Causal Relativistic Hydrodynamics for Viscous Fluids" Entropy 26, no. 12: 1001. https://doi.org/10.3390/e26121001
APA StyleCalzetta, E. (2024). Closing Editorial: Causal Relativistic Hydrodynamics for Viscous Fluids. Entropy, 26(12), 1001. https://doi.org/10.3390/e26121001