A Contemporary View on Carnot’s Réflexions
Abstract
:1. Introduction
2. Entropy as Quantity of Heat
2.1. Difference to Energy
2.2. Latent Heat
2.3. Irreversible Process
2.4. Conceptual Change Towards Entropy
3. Foundation of Carnot’s Réflexions
3.1. Calorique as a Precursor of Entropy
3.2. Waterfall Analogy
3.3. Statement on Efficiency Without Energy
4. Combustion Engines
- Flame reaction;
- Thermal diffusion of hot flame gases;
- Thermal diffusion of hot exhaust gasses;
- Heat conduction at the inlet;
- Heat conduction at the outlet;
- Friction due to the viscosity of the medium;
- The turbulence of the medium;
- Leakage of the medium, mainly in turbines;
- Mechanical friction;
- Turbulence of the exhaust gas;
- General operation of the engine.
4.1. Stirling Engine
4.2. Gas Turbine as Prototype of a Combustion Engine
4.3. Steam Turbine
4.4. Combined Cycle Turbine
5. Heat Pump
6. Energy
6.1. Quantitative Comparison
6.2. Energy Conservation
6.3. Energy Consumption or Degradation
6.4. Energy Supply
7. Energy Analysis of Heat Engines
7.1. Physical Origin of Non-Unity Efficiency
7.2. Utilization of Entropy Generated by Diffusion
7.3. Endoreversible Engines
8. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Carnot, S. Réflexions sur la Puissance Motrice du feu et sur les Machines Propres à Développer Cette Puissance; Bachelier: Paris, France, 1824. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; Online Edition; California Institute of Technology: Pasadena, CA, USA, 2010. [Google Scholar]
- Callendar, H.L. The Caloric Theory of Heat and Carnot’s Principle. Proc. Phys. Soc. Lond. 1910, 23, 153–189. [Google Scholar] [CrossRef]
- Meyn, J.P. Wärme und Energie; Physik für Lehramtsstudierende; De Gruyter: Berlin, Germany, 2021; Volume 4. [Google Scholar] [CrossRef]
- Job, G. Neudarstellung der Wärmelehre; Akademische Verlagsgesellschaft: Frankfurt, Germany, 1972. [Google Scholar]
- Falk, G. Entropy, a resurrection of caloric-a look at the history of thermodynamics. Eur. J. Phys. 1985, 6, 108. [Google Scholar] [CrossRef]
- Fuchs, H.U. The Dynamics of Heat; Springer: New York, NY, USA, 1996. [Google Scholar]
- Herrmann, F.; Pohlig, M. Which Physical Quantity Deserves the Name “Quantity of Heat”? Entropy 2021, 23, 1078. [Google Scholar] [CrossRef]
- Feldhoff, A. On the Thermal Capacity of Solids. Entropy 2022, 24, 479. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, H.U.; D’Anna, M.; Corni, F. Entropy and the Experience of Heat. Entropy 2022, 24, 646. [Google Scholar] [CrossRef]
- Herrmann, F. The Karlsruhe Physics Course. Eur. J. Phys. 2000, 21, 49–58. [Google Scholar] [CrossRef]
- Starauschek, E. Wärmelehre nach dem Karlsruher Physikkurs—Ergebnisse einer empirischen Studie. Phys. Didakt. Sch. Hochsch. 2002, 1, 12–18. [Google Scholar]
- Black, J. Lectures on the Elements of Chemistry; Robison, J., Ed.; Mundell & Son: Edinburgh, UK, 1803. [Google Scholar] [CrossRef]
- Lavoisier, A.L. Traité Élémentaire de Chimie: Présentédans un Ordre Nouveau et D’après les Découvertes Modernes…; Cuchet: Paris, France, 1789. [Google Scholar] [CrossRef]
- Erickson, G.L. Children’s conceptions of heat and temperature. Sci. Educ. 1979, 63, 221–230. [Google Scholar] [CrossRef]
- Posner, G.J.; Strike, K.A.; Hewson, P.W.; Gertzog, W.A. Accommodation of a scientific conception: Toward a theory of conceptual change. Sci. Educ. 1982, 66, 211–227. [Google Scholar] [CrossRef]
- Carnot, S. Reflections on the Motive Power of Heat and on Machines Fitted to Develop this Power; Thurston, R.H., Translator; John Wiley & Sons: New York, NY, USA, 1897. [Google Scholar]
- Mer, V.K.L. Some Current Misinterpretations of N. L. Sadi Carnot’s Memoir and Cycle. Am. J. Phys. 1954, 22, 20–27. [Google Scholar] [CrossRef]
- Mer, V.K.L. Some Current Misinterpretations of N. L. Sadi Carnot’s Memoir and Cycle. II. Am. J. Phys. 1955, 23, 95–102. [Google Scholar] [CrossRef]
- Hirshfeld, M.A. On “Some Current Misinterpretations of Carnot’s Memoir”. Am. J. Phys. 1955, 23, 103–105. [Google Scholar] [CrossRef]
- Planck, M. Ueber das Princip der Vermehrung der Entropie. Ann. Phys. 1887, 266, 562–582. [Google Scholar] [CrossRef]
- Klein, M.J. Carnot’s contribution to thermodynamics. Phys. Today 1974, 27, 23–28. [Google Scholar] [CrossRef]
- Dias, P.M.C.; Pinto, S.P.; Cassiano, D.H. The conceptual import of Carnot’s theorem to the discovery of the entropy. Arch. Hist. Exact Sci. 1995, 49, 135–161. [Google Scholar] [CrossRef]
- Coopersmith, J. Energy, the Subtle Concept; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Thomson, W. On an Absolute Thermometric Scale founded on Carnot’s Theory of the Motive Power of Heat and calculated from Regnault’s Observations. In Mathematical and Physical Papers; Cambridge University Press: Cambridge, UK, 1882; Volume 1, pp. 100–106. [Google Scholar]
- Bejan, A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 1996, 79, 1191–1218. [Google Scholar] [CrossRef]
- Denton, J.D. The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines. J. Turbomach. 1993, 115, 621–656. [Google Scholar] [CrossRef]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot Engine at Maximum Power Output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Riley, P.H. The Myth of the High-Efficiency External-Combustion Stirling Engine. Engineering 2015, 7, 789–795. [Google Scholar] [CrossRef]
- Bejan, A. Advanced Engineering Thermodynamics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Leff, H.S. Thermodynamics of combined-cycle electric power plants. Am. J. Phys. 2012, 80, 515–518. [Google Scholar] [CrossRef]
- Salvi, P.R.; Schettino, V. Sadi Carnot’s Réflexions and the foundation of thermodynamics. Substantia 2019, 3, 73–96. [Google Scholar] [CrossRef]
- Thomson, W. XX. On the œconomy of the heating or cooling of buildings by means of currents of air. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1854, 7, 138–142. [Google Scholar] [CrossRef]
- Thomson, W. XXXVI.—An Account of Carnot’s Theory of the Motive Power of Heat;with Numerical Results deduced from Regnault’s Experiments on Steam. Trans. R. Soc. Edinb. 1849, 16, 541–574. [Google Scholar] [CrossRef]
- Thomson, W. II. On the dynamical theory of heat, with numerical results deduced from Mr. Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1852, 4, 8–21. [Google Scholar] [CrossRef]
- Hargreaves, C.M. The Philips Stirling Engine; Elsevier: Amsterdam, The Netherland, 1991. [Google Scholar]
- Statistisches Bundesamt (German Federal Statistical Office). Press Release N034 of 12 June 2023; Statistisches Bundesamt: Wiesbaden, Germany, 2023. [Google Scholar]
- Joule, J.P. III. On the mechanical equivalent of heat. Philos. Trans. R. Soc. Lond. 1850, 140, 61–82. [Google Scholar] [CrossRef]
- Rant, Z. Exergie, ein neues Wort für technische Arbeitsfähigkeit. Forsch. Ingenieurwesen 1956, 22, 36–37. [Google Scholar]
- Holmberg, H.; Ruohonen, P.; Ahtila, P. Determination of the Real Loss of Power for a Condensing and a Backpressure Turbine by Means of Second Law Analysis. Entropy 2009, 11, 702–712. [Google Scholar] [CrossRef]
- Pal, R. On the Gouy–Stodola theorem of thermodynamics for open systems. Int. J. Mech. Eng. Educ. 2017, 45, 194–206. [Google Scholar] [CrossRef]
- Tolman, R.C.; Fine, P.C. On the Irreversible Production of Entropy. Rev. Mod. Phys. 1948, 20, 51–77. [Google Scholar] [CrossRef]
- Wu, J. Three factors causing the thermal efficiency of a heat engine to be less than unity and their relevance to daily life. Eur. J. Phys. 2014, 36, 015008. [Google Scholar] [CrossRef]
- Vaudrey, A.; Lanzetta, F.; Feidt, M.H.B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines. J. Non-Equilib. Thermodyn. 2014, 39, 199–203. [Google Scholar] [CrossRef]
- Feidt, M. The History and Perspectives of Efficiency at Maximum Power of the Carnot Engine. Entropy 2017, 19, 369. [Google Scholar] [CrossRef]
- Rubin, M.H. Optimal configuration of a class of irreversible heat engines. I. Phys. Rev. A 1979, 19, 1272–1276. [Google Scholar] [CrossRef]
- Fu, C.; Anantharaman, R.; Jordal, K.; Gundersen, T. Thermal efficiency of coal-fired power plants: From theoretical to practical assessments. Energy Convers. Manag. 2015, 105, 530–544. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyn, J.-P. A Contemporary View on Carnot’s Réflexions. Entropy 2024, 26, 1002. https://doi.org/10.3390/e26121002
Meyn J-P. A Contemporary View on Carnot’s Réflexions. Entropy. 2024; 26(12):1002. https://doi.org/10.3390/e26121002
Chicago/Turabian StyleMeyn, Jan-Peter. 2024. "A Contemporary View on Carnot’s Réflexions" Entropy 26, no. 12: 1002. https://doi.org/10.3390/e26121002
APA StyleMeyn, J. -P. (2024). A Contemporary View on Carnot’s Réflexions. Entropy, 26(12), 1002. https://doi.org/10.3390/e26121002