Advances in Lipid Extraction Methods—A Review
Abstract
:1. Introduction
2. Pretreatments before Extraction
3. Selection of Appropriate Extraction Solvent(s)
4. Lipid Extraction Methods
4.1. Classical Methods: Bligh and Dyer and Folch Methods
4.2. Modified Bligh and Dyer and Folch Methods
4.3. Soxhlet Extraction of Lipids
4.4. Supercritical CO2 Extraction (SCE)
4.5. Extractions of Lipids for Lipidomics Studies
4.6. Solid-Phase Extraction (SPE)
4.7. Lipid Extraction Utilizing Green Solvents
4.8. Other Methods
5. Conclusions and Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; Van Meer, G.; Wakelam, M.J.O.; Dennis, E.A. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 2009, 50, S9–S14. [Google Scholar] [CrossRef] [Green Version]
- Pati, S.; Nie, B.; Arnold, R.D.; Cummings, B.S. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomed. Chromatogr. 2016, 30, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.-S. Omega−3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits—A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Han, X. Lipidomics for studying metabolism. Nat. Rev. Endocrinol. 2016, 12, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Bligh, E.; Dyer, W. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cho, J.M.; Chang, Y.K.; Oh, Y.-K. Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresour. Technol. 2017, 244, 1317–1328. [Google Scholar] [CrossRef]
- Wang, Q.; Oshita, K.; Takaoka, M.; Shiota, K. Influence of water content and cell disruption on lipid extraction using subcritical dimethyl ether in wet microalgae. Bioresour. Technol. 2021, 329, 124892. [Google Scholar] [CrossRef]
- Zainuddin, M.F.; Fai, C.K.; Ariff, A.B.; Rios-Solis, L.; Halim, M. Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts. Microorganisms 2021, 9, 251. [Google Scholar] [CrossRef]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Alshehry, Z.; Barlow, C.; Weir, J.; Zhou, Y.; McConville, M.; Meikle, P. An Efficient Single Phase Method for the Extraction of Plasma Lipids. Metabolites 2015, 5, 389–403. [Google Scholar] [CrossRef]
- Welti, R.; Li, W.; Li, M.; Sang, Y.; Biesiada, H.; Zhou, H.-E.; Rajashekar, C.; Williams, T.D.; Wang, X. Profiling membrane lipids in plant stress responses: Role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 2002, 277, 31994–32002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smedes, F. Determination of total lipid using non-chlorinated solvents. Analyst 1999, 124, 1711–1718. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Retra, K.; Bleijerveld, O.B.; Van Gestel, R.A.; Tielens, A.G.M.; Van Hellemond, J.J.; Brouwers, J.F. A simple and universal method for the separation and identification of phospholipid molecular species. Rapid Commun. Mass Spectrom. 2008, 22, 1853–1862. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Mikes, F.; Matsakas, L. An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Micro-Organisms. Molecules 2018, 23, 1562. [Google Scholar] [CrossRef] [Green Version]
- Hacİsa, M.; Metin, C.; Ercan, E.; Alparslan, Y. Effect of different cell disruption methods on lipid yield of Schizochytrium sp. J. Am. Oil Chem. Soc. 2021. [Google Scholar] [CrossRef]
- Howlader, M.S.; French, W.T. Pretreatment and Lipid Extraction from Wet Microalgae: Challenges, Potential, and Application. In Microalgae Biotechnology for Food, Health and High Value Products; Alam, M.A., Xu, J.-L., Wang, Z., Eds.; Springer Singapore: Singapore, 2020; pp. 469–483. [Google Scholar] [CrossRef]
- Barba, F.J.; Grimi, N.; Vorobiev, E. New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng. Rev. 2015, 7, 45–62. [Google Scholar] [CrossRef]
- Mubarak, M.; Shaija, A.; Suchithra, T.V. Ultrasonication: An effective pre-treatment method for extracting lipid from Salvinia molesta for biodiesel production. Resour.-Effic. Technol. 2016, 2, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Oh, Y.-K.; Han, J.-I. Design optimization of hydrodynamic cavitation for effectual lipid extraction from wet microalgae. J. Environ. Chem. Eng. 2019, 7, 102942. [Google Scholar] [CrossRef]
- Bharte, S.; Desai, K. Techniques for harvesting, cell disruption and lipid extraction of microalgae for biofuel production. Biofuels 2021, 12, 285–305. [Google Scholar] [CrossRef]
- Byreddy, A.; Gupta, A.; Barrow, C.; Puri, M. Comparison of Cell Disruption Methods for Improving Lipid Extraction from Thraustochytrid Strains. Mar. Drugs 2015, 13, 5111–5127. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ghasemi Naghdi, F.; Garg, S.; Adarme-Vega, T.; Thurecht, K.J.; Ghafor, W.; Tannock, S.; Schenk, P.M. A comparative study: The impact of different lipid extraction methods on current microalgal lipid research. Microb. Cell Factories 2014, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Wei, C.; Yan, Q.; Shan, X.; Wu, M.; Zhao, X.; Song, Y. Optimization of a novel lipid extraction process from microalgae. Sci. Rep. 2021, 11, 20221. [Google Scholar] [CrossRef]
- Jin, G.; Yang, F.; Hu, C.; Shen, H.; Zhao, Z.K. Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresour. Technol. 2012, 111, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-S.; Oh, Y.-K.; Park, S.-C.; Lee, J.-W.; Park, J.-Y. Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris. Renew. Energy 2013, 54, 156–160. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X.; Wang, Z.; Sun, Y.; Zhu, S.; Li, L.; Lv, P. Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renew. Energy 2018, 125, 1049–1057. [Google Scholar] [CrossRef]
- Kumar, S.P.J.; Prasad, S.R.; Banerjee, R.; Agarwal, D.K.; Kulkarni, K.S.; Ramesh, K.V. Green solvents and technologies for oil extraction from oilseeds. Chem. Cent. J. 2017, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P. Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Mar. Drugs 2015, 13, 3182–3230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Yu, X.; Dong, T.; Zheng, Y.; Miao, C.; Chen, S. Investigations on cell disruption of oleaginous microorganisms: Hydrochloric acid digestion is an effective method for lipid extraction. Eur. J. Lipid Sci. Technol. 2015, 117, 730–737. [Google Scholar] [CrossRef]
- Safi, C.; Camy, S.; Frances, C.; Varela, M.M.; Badia, E.C.; Pontalier, P.-Y.; Vaca-Garcia, C. Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: Influence of bead milling on extraction performance. J. Appl. Phycol. 2014, 26, 1711–1718. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Eiriksson, F.F.; Thorsteinsdóttir, M.; Simonsen, H.T. Effects of extraction parameters on lipid profiling of mosses using UPLC-ESI-QTOF-MS and multivariate data analysis. Metabolomics 2021, 17, 96. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, X.; Zhen, F.; Wang, Z.; Kong, X.; Sun, Y. Assessment of enzyme addition strategies on the enhancement of lipid yield from microalgae. Biochem. Eng. J. 2022, 177, 108198. [Google Scholar] [CrossRef]
- Aksoylu Özbek, Z.; Günç Ergönül, P. Determination of Physicochemical Properties, Fatty Acid, Tocopherol, Sterol, and Phenolic Profiles of Expeller–Pressed Poppy Seed Oils from Turkey. J. Am. Oil Chem. Soc. 2020, 97, 591–602. [Google Scholar] [CrossRef]
- Fouad, M.; Gaber, M.A.; Knoerzer, K.; Mansour, M.P.; Trujillo, F.J.; Juliano, P.; Shrestha, P. Improved canola oil expeller extraction using a pilot-scale continuous flow microwave system for pre-treatment of seeds and flaked seeds. J. Food Eng. 2020, 284, 110053. [Google Scholar] [CrossRef]
- Sey, A.A.; Pham, T.H.; Kavanagh, V.; Kaur, S.; Cheema, M.; Galagedara, L.; Thomas, R. Canola produced under boreal climatic conditions in Newfoundland and Labrador have a unique lipid composition and expeller press extraction retained the composition for commercial use. J. Adv. Res. 2020, 24, 423–434. [Google Scholar] [CrossRef]
- Niu, Y.; Rogiewicz, A.; Wan, C.; Guo, M.; Huang, F.; Slominski, B.A. Effect of Microwave Treatment on the Efficacy of Expeller Pressing of Brassica napus Rapeseed and Brassica juncea Mustard Seeds. J. Agric. Food Chem. 2015, 63, 3078–3084. [Google Scholar] [CrossRef]
- Drévillon, L.; Koubaa, M.; Vorobiev, E. Lipid extraction from Yarrowia lipolytica biomass using high-pressure homogenization. Biomass Bioenergy 2018, 115, 143–150. [Google Scholar] [CrossRef]
- Balduyck, L.; Bruneel, C.; Goiris, K.; Dejonghe, C.; Foubert, I. Influence of High Pressure Homogenization on Free Fatty Acid Formation in Nannochloropsis sp. Eur. J. Lipid Sci. Technol. 2018, 120, 1700436. [Google Scholar] [CrossRef]
- Kwak, M.; Kang, S.G.; Hong, W.-K.; Han, J.-I.; Chang, Y.K. Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer. Bioprocess Biosyst. Eng. 2018, 41, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Gogate, P.R.; Kabadi, A.M. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem. Eng. J. 2009, 44, 60–72. [Google Scholar] [CrossRef]
- Quesada-Salas, M.C.; Delfau-Bonnet, G.; Willig, G.; Préat, N.; Allais, F.; Ioannou, I. Optimization and Comparison of Three Cell Disruption Processes on Lipid Extraction from Microalgae. Processes 2021, 9, 369. [Google Scholar] [CrossRef]
- González-González, L.M.; Astals, S.; Pratt, S.; Jensen, P.D.; Schenk, P.M. Osmotic shock pre-treatment of Chaetoceros muelleri wet biomass enhanced solvent-free lipid extraction and biogas production. Algal Res. 2021, 54, 102177. [Google Scholar] [CrossRef]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Selvaggini, R.; Sordini, B.; Lorefice, A.; Daidone, L.; Pagano, M.; Tomasone, R.; Servili, M. Extra-Virgin Olive Oil Extracted Using Pulsed Electric Field Technology: Cultivar Impact on Oil Yield and Quality. Front. Nutr. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Shorstkii, I.; Khudyakov, D.; Mirshekarloo, M.S. Pulsed electric field assisted sunflower oil pilot production: Impact on oil yield, extraction kinetics and chemical parameters. Innov. Food Sci. Emerg. Technol. 2020, 60, 102309. [Google Scholar] [CrossRef]
- Gulzar, S.; Benjakul, S. Impact of pulsed electric field pretreatment on yield and quality of lipid extracted from cephalothorax of Pacific white shrimp (Litopenaeus vannamei) by ultrasound-assisted process. Int. J. Food Sci. Technol. 2020, 55, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Kovačić, Đ.; Rupčić, S.; Kralik, D.; Jovičić, D.; Spajić, R.; Tišma, M. Pulsed electric field: An emerging pretreatment technology in a biogas production. Waste Manag. 2021, 120, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Fattah, I.M.R.; Noraini, M.Y.; Mofijur, M.; Silitonga, A.S.; Badruddin, I.A.; Khan, T.M.Y.; Ong, H.C.; Mahlia, T.M.I. Lipid Extraction Maximization and Enzymatic Synthesis of Biodiesel from Microalgae. Appl. Sci. 2020, 10, 6103. [Google Scholar] [CrossRef]
- Patel, A.; Arora, N.; Pruthi, V.; Pruthi, P.A. A novel rapid ultrasonication-microwave treatment for total lipid extraction from wet oleaginous yeast biomass for sustainable biodiesel production. Ultrason. Sonochem. 2019, 51, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, J.; Zhang, X.; Tyagi, R.D.; Dong, W. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit. Rev. Biotechnol. 2018, 38, 902–917. [Google Scholar] [CrossRef] [PubMed]
- Sicaire, A.-G.; Vian, M.A.; Fine, F.; Carré, P.; Tostain, S.; Chemat, F. Ultrasound induced green solvent extraction of oil from oleaginous seeds. Ultrason. Sonochem. 2016, 31, 319–329. [Google Scholar] [CrossRef]
- Silva Dos Reis, A.; Santos, A.S.; Francisco De Carvalho Gonçalves, J. Ultrasound-assisted lipid extractions, enriched with sterols and tetranortriterpenoids, from Carapa guianensis seeds and the application of lipidomics using GC/MS. RSC Adv. 2021, 11, 33160–33168. [Google Scholar] [CrossRef]
- Ranjan, A.; Patil, C.; Moholkar, V.S. Mechanistic Assessment of Microalgal Lipid Extraction. Ind. Eng. Chem. Res. 2010, 49, 2979–2985. [Google Scholar] [CrossRef]
- González-Fernández, M.J.; Manzano-Agugliaro, F.; Zapata-Sierra, A.; Belarbi, E.H.; Guil-Guerrero, J.L. Green argan oil extraction from roasted and unroasted seeds by using various polarity solvents allowed by the EU legislation. J. Clean. Prod. 2020, 276, 123081. [Google Scholar] [CrossRef]
- Lin, J.-H.; Liu, L.-Y.; Yang, M.-H.; Lee, M.-H. Ethyl Acetate/Ethyl Alcohol Mixtures as an Alternative to Folch Reagent for Extracting Animal Lipids. J. Agric. Food Chem. 2004, 52, 4984–4986. [Google Scholar] [CrossRef]
- Xie, D.; Jin, J.; Sun, J.; Liang, L.; Wang, X.; Zhang, W.; Wang, X.; Jin, Q. Comparison of solvents for extraction of krill oil from krill meal: Lipid yield, phospholipids content, fatty acids composition and minor components. Food Chem. 2017, 233, 434–441. [Google Scholar] [CrossRef]
- Caprioli, G.; Giusti, F.; Ballini, R.; Sagratini, G.; Vila-Donat, P.; Vittori, S.; Fiorini, D. Lipid nutritional value of legumes: Evaluation of different extraction methods and determination of fatty acid composition. Food Chem. 2016, 192, 965–971. [Google Scholar] [CrossRef]
- Liu, Z.; Rochfort, S.; Cocks, B.G. Optimization of a single phase method for lipid extraction from milk. J. Chromatogr. A 2016, 1458, 145–149. [Google Scholar] [CrossRef]
- Loyao, A.S.; Villasica, S.L.G.; Dela Peña, P.L.L.; Go, A.W. Extraction of lipids from spent coffee grounds with non-polar renewable solvents as alternative. Ind. Crop. Prod. 2018, 119, 152–161. [Google Scholar] [CrossRef]
- Ramos-Bueno, R.P.; González-Fernández, M.J.; Sánchez-Muros-Lozano, M.J.; García-Barroso, F.; Guil-Guerrero, J.L. Fatty acid profiles and cholesterol content of seven insect species assessed by several extraction systems. Eur. Food Res. Technol. 2016, 242, 1471–1477. [Google Scholar] [CrossRef]
- De Jesus, S.S.; Ferreira, G.F.; Moreira, L.S.; Wolf Maciel, M.R.; Maciel Filho, R. Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renew. Energy 2019, 143, 130–141. [Google Scholar] [CrossRef]
- dos Santos, R.R.; Moreira, D.M.; Kunigami, C.N.; Aranda, D.A.G.; Teixeira, C.M.L.L. Comparison between several methods of total lipid extraction from Chlorella vulgaris biomass. Ultrason. Sonochem. 2015, 22, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [CrossRef]
- Shin, J.; Song, M.-H.; Yu, J.-W.; Ko, E.-Y.; Shang, X.; Oh, J.-W.; Keum, Y.-S.; Saini, R.K. Anticancer Potential of Lipophilic Constituents of Eleven Shellfish Species Commonly Consumed in Korea. Antioxidants 2021, 10, 1629. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Rauf, A.; Khalil, A.A.; Ko, E.-Y.; Keum, Y.-S.; Anwar, S.; Alamri, A.; Rengasamy, K.R.R. Edible mushrooms show significant differences in sterols and fatty acid compositions. South Afr. J. Bot. 2021, 141, 344–356. [Google Scholar] [CrossRef]
- Saini, R.K.; Mahomoodally, M.F.; Sadeer, N.B.; Keum, Y.S.; Rr Rengasamy, K. Characterization of nutritionally important lipophilic constituents from brown kelp Ecklonia radiata (C. Ag.) J. Agardh. Food Chem. 2021, 340, 127897. [Google Scholar] [CrossRef]
- Tao, F.; Ngadi, M. Recent advances in rapid and nondestructive determination of fat content and fatty acids composition of muscle foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 1565–1593. [Google Scholar] [CrossRef]
- Iverson, S.J.; Lang, S.L.C.; Cooper, M.H. Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids 2001, 36, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
- Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulmer, C.Z.; Jones, C.M.; Yost, R.A.; Garrett, T.J.; Bowden, J.A. Optimization of Folch, Bligh-Dyer, and Matyash sample-to-extraction solvent ratios for human plasma-based lipidomics studies. Anal. Chim. Acta 2018, 1037, 351–357. [Google Scholar] [CrossRef]
- Manirakiza, P.; Covaci, A.; Schepens, P. Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods. J. Food Compos. Anal. 2001, 14, 93–100. [Google Scholar]
- Axelsson, M.; Gentili, F. A Single-Step Method for Rapid Extraction of Total Lipids from Green Microalgae. PLoS ONE 2014, 9, e89643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalili, F.; Jafari, S.M.; Emam-Djomeh, Z.; Malekjani, N.; Farzaneh, V. Optimization of Ultrasound-Assisted Extraction of Oil from Canola Seeds with the Use of Response Surface Methodology. Food Anal. Methods 2018, 11, 598–612. [Google Scholar] [CrossRef]
- Ramluckan, K.; Moodley, K.G.; Bux, F. An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel 2014, 116, 103–108. [Google Scholar] [CrossRef]
- Kozłowska, M.; Gruczyńska, E.; Ścibisz, I.; Rudzińska, M. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chem. 2016, 213, 450–456. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Song, L.; Sommerfeld, M.; Hu, Q. Automated accelerated solvent extraction method for total lipid analysis of microalgae. Algal Res. 2020, 51, 102080. [Google Scholar] [CrossRef]
- Solana, M.; Rizza, C.S.; Bertucco, A. Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: Comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina. J. Supercrit. Fluids 2014, 92, 311–318. [Google Scholar] [CrossRef]
- Haloui, I.; Meniai, A.-H. Supercritical CO 2 extraction of essential oil from Algerian Argan ( Argania spinosa L.) seeds and yield optimization. Int. J. Hydrogen Energy 2017, 42, 12912–12919. [Google Scholar] [CrossRef]
- Taribak, C.; Casas, L.; Mantell, C.; Elfadli, Z.; Metni, R.E.; Martínez De La Ossa, E.J. Quality of Cosmetic Argan Oil Extracted by Supercritical Fluid Extraction from Argania spinosa L. J. Chem. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fiori, L.; Lavelli, V.; Duba, K.S.; Sri Harsha, P.S.C.; Mohamed, H.B.; Guella, G. Supercritical CO2 extraction of oil from seeds of six grape cultivars: Modeling of mass transfer kinetics and evaluation of lipid profiles and tocol contents. J. Supercrit. Fluids 2014, 94, 71–80. [Google Scholar] [CrossRef]
- Fernández-Acosta, K.; Salmeron, I.; Chavez-Flores, D.; Perez-Reyes, I.; Ramos, V.; Ngadi, M.; Kwofie, E.M.; Perez-Vega, S. Evaluation of different variables on the supercritical CO2 extraction of oat (Avena sativa L.) oil; main fatty acids, polyphenols, and antioxidant content. J. Cereal Sci. 2019, 88, 118–124. [Google Scholar] [CrossRef]
- Kanda, H.; Fukuta, Y.; Wahyudiono; Goto, M. Enhancement of Lipid Extraction from Soya Bean by Addition of Dimethyl Ether as Entrainer into Supercritical Carbon Dioxide. Foods 2021, 10, 1223. [Google Scholar] [CrossRef] [PubMed]
- Löfgren, L.; Ståhlman, M.; Forsberg, G.-B.; Saarinen, S.; Nilsson, R.; Hansson, G.I. The BUME method: A novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J. Lipid Res. 2012, 53, 1690–1700. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.W.K.; Braidy, N.; Pickford, R.; Sachdev, P.S.; Poljak, A. Comparison of Single Phase and Biphasic Extraction Protocols for Lipidomic Studies Using Human Plasma. Front. Neurol. 2019, 10, 879. [Google Scholar] [CrossRef]
- Satomi, Y.; Hirayama, M.; Kobayashi, H. One-step lipid extraction for plasma lipidomics analysis by liquid chromatography mass spectrometry. J. Chromatogr. B 2017, 1063, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Sarafian, M.H.; Gaudin, M.; Lewis, M.R.; Martin, F.-P.; Holmes, E.; Nicholson, J.K.; Dumas, M.-E. Objective Set of Criteria for Optimization of Sample Preparation Procedures for Ultra-High Throughput Untargeted Blood Plasma Lipid Profiling by Ultra Performance Liquid Chromatography–Mass Spectrometry. Anal. Chem. 2014, 86, 5766–5774. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.; Rudnitskaya, A.; Blackburn, G.J.; Fauzi, N.M.; Pitt, A.R.; Spickett, C.M. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J. Lipid Res. 2013, 54, 1812–1824. [Google Scholar] [CrossRef] [Green Version]
- Furse, S.; Egmond, M.R.; Killian, J.A. Isolation of lipids from biological samples. Mol. Membr. Biol. 2015, 32, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Brietzke, E. Recent advances in lipidomics: Analytical and clinical perspectives. Prostaglandins Other Lipid Mediat. 2017, 128–129, 8–16. [Google Scholar] [CrossRef]
- König, S.; Ischebeck, T.; Lerche, J.; Stenzel, I.; Heilmann, I. Salt-stress-induced association of phosphatidylinositol 4,5-bisphosphate with clathrin-coated vesicles in plants. Biochem. J. 2008, 415, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Wolf, C.; Quinn, P.J. Lipidomics: Practical aspects and applications. Prog. Lipid Res. 2008, 47, 15–36. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Wong, G.; Tsorotes, D.; Barlow, C.K.; Weir, J.M.; Christopher, M.J.; Macintosh, G.L.; Goudey, B.; Stern, L.; Kowalczyk, A.; et al. Plasma Lipidomic Analysis of Stable and Unstable Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2723–2732. [Google Scholar] [CrossRef] [Green Version]
- Aldana, J.; Romero-Otero, A.; Cala, M.P. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020, 10, 231. [Google Scholar] [CrossRef]
- de la Roche, I.A.; Andrews, C.J.; Kates, M. Changes in Phospholipid Composition of a Winter Wheat Cultivar during Germination at 2 C and 24 C. Plant Physiol. 1973, 51, 468–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, S.B.; Wang, X. Increase in free linolenic and linoleic acids associated with phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1998, 1393, 193–202. [Google Scholar] [CrossRef]
- Vu, H.S.; Shiva, S.; Roth, M.R.; Tamura, P.; Zheng, L.; Li, M.; Sarowar, S.; Honey, S.; McEllhiney, D.; Hinkes, P.; et al. Lipid changes after leaf wounding in Arabidopsis thaliana: Expanded lipidomic data form the basis for lipid co-occurrence analysis. Plant J. 2014, 80, 728–743. [Google Scholar] [CrossRef]
- Shiva, S.; Enninful, R.; Roth, M.R.; Tamura, P.; Jagadish, K.; Welti, R. An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods 2018, 14, 14. [Google Scholar] [CrossRef] [Green Version]
- Markham, J.E.; Li, J.; Cahoon, E.B.; Jaworski, J.G. Separation and Identification of Major Plant Sphingolipid Classes from Leaves. J. Biol. Chem. 2006, 281, 22684–22694. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Wang, H.; Zhang, M.; Zhu, Q.; Zhang, M.; Lu, W.; Xue, J.; Chen, K.; Shen, Q. Titania-coated fibrous silica (TiO2/KCC-1) core-shell microspheres based solid-phase extraction in clam (Corbicula fluminea) using hydrophilic interaction liquid chromatography and mass spectrometry. Food Res. Int. 2020, 137, 109408. [Google Scholar] [CrossRef]
- Antonelli, M.; Benedetti, B.; Cavaliere, C.; Cerrato, A.; Montone, C.M.; Piovesana, S.; Lagana, A.; Capriotti, A.L. Phospholipidome of extra virgin olive oil: Development of a solid phase extraction protocol followed by liquid chromatography–high resolution mass spectrometry for its software-assisted identification. Food Chem. 2020, 310, 125860. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Wang, J.; Li, W.; Xiao, J.; Li, J.; Lin, X.; Xie, Z.; You, L.; Zhang, Q. Silver nanoparticles-coated monolithic column for in-tube solid-phase microextraction of monounsaturated fatty acid methyl esters. J. Chromatogr. A 2019, 1585, 19–26. [Google Scholar] [CrossRef]
- Bakhytkyzy, I.; Hewelt-Belka, W.; Kot-Wasik, A. The dispersive micro-solid phase extraction method for MS-based lipidomics of human breast milk. Microchem. J. 2020, 152, 104269. [Google Scholar] [CrossRef]
- Jin, R.; Li, L.; Feng, J.; Dai, Z.; Huang, Y.-W.; Shen, Q. Zwitterionic hydrophilic interaction solid-phase extraction and multi-dimensional mass spectrometry for shotgun lipidomic study of Hypophthalmichthys nobilis. Food Chem. 2017, 216, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Gorassini, A.; Verardo, G.; Fregolent, S.-C.; Bortolomeazzi, R. Rapid determination of cholesterol oxidation products in milk powder based products by reversed phase SPE and HPLC-APCI-MS/MS. Food Chem. 2017, 230, 604–610. [Google Scholar] [CrossRef]
- Probst, K.V.; Wales, M.D.; Rezac, M.E.; Vadlani, P.V. Evaluation of green solvents: Oil extraction from oleaginous yeast Lipomyces starkeyi using cyclopentyl methyl ether (CPME). Biotechnol. Prog. 2017, 33, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, Y.; Rosenberg, J.N.; Sharif, N.; Betenbaugh, M.J.; Wang, F. Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Adv. 2016, 6, 29127–29134. [Google Scholar] [CrossRef]
- De Jesus, S.S.; Filho, R.M. Recent advances in lipid extraction using green solvents. Renew. Sustain. Energy Rev. 2020, 133, 110289. [Google Scholar] [CrossRef]
- Rezaei Motlagh, S.; Harun, R.; Awang Biak, D.R.; Hussain, S.A.; Omar, R.; Khezri, R.; Elgharbawy, A.A. Ionic liquid-based microwave-assisted extraction of lipid and eicosapentaenoic acid from Nannochloropsis oceanica biomass: Experimental optimization approach. J. Appl. Phycol. 2021, 33, 2015–2029. [Google Scholar] [CrossRef]
- Stamenković, O.S.; Kostić, M.D.; Tasić, M.B.; Djalović, I.G.; Mitrović, P.M.; Biberdžić, M.O.; Veljković, V.B. Kinetic, thermodynamic and optimization study of the corn germ oil extraction process. Food Bioprod. Process. 2020, 120, 91–103. [Google Scholar] [CrossRef]
- Milić, S.M.; Kostić, M.D.; Milić, P.S.; Vučić, V.M.; Arsić, A.Č.; Veljković, V.B.; Stamenković, O.S. Extraction of Oil from Rosehip Seed: Kinetics, Thermodynamics, and Optimization. Chem. Eng. Technol. 2020, 43, 2373–2381. [Google Scholar] [CrossRef]
- Abdolshahi, A.; Majd, M.H.; Rad, J.S.; Taheri, M.; Shabani, A.; Teixeira Da Silva, J.A. Choice of solvent extraction technique affects fatty acid composition of pistachio (Pistacia vera L.) oil. J. Food Sci. Technol. 2015, 52, 2422–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pretreatment Methods | Mode of Action | Advantages | Disadvantages | References |
---|---|---|---|---|
Acid-catalyzed hot-water | Release of bound lipids by uncoupling the lipid-protein and lipid-starch and intermolecular forces |
|
| [34] |
Bead beating | Mechanical compaction and shear stress |
|
| [35,36] |
Enzyme | Specific enzyme-substrateinteraction |
|
| [18,28,29,30,31,32,37] |
Expeller press | Mechanical compaction and shear stress |
|
| [38,39,40,41] |
High-pressure homogenization (HPH) | Cavitation and shear stress |
|
| [42,43] |
High-speed shearing homogenization | Cavitation and shear forces |
|
| [18,44] |
Hydrodynamic cavitation | Shear forces, creation, and extinction of cavities |
|
| [23,45] |
Microwave Irradiation | Temperature increase, molecular energy increase |
|
| [39,41,46] |
Osmotic shock | osmotic pressure-induced cell disruption and the release of the intracellular lipids |
|
| [25,47] |
Pulsed Electric Field (PEF) | Transient permeabilization of cell membranes |
|
| [48,49,50,51] |
Ultrasonication | Cavitation, acoustic streaming, and liquid shear stress |
|
| [52,53,54,55,56] |
Sample | Solvent Tested | Most Efficient Solvents * | Reference |
---|---|---|---|
Argan (Argania spinosa L.) seeds | n-Hexane, ethyl acetate, acetone, n-hexane/acetone (1:1, v/v), ethanol/water (96:4, v/v), and water | n-Hexane/acetone (1:1, v/v) | [58] |
Fresh egg yolk, boiled yolk, and yolk powder | Ethyl acetate/ethanol (in different ratios) and chloroform/methanol (2:1, v/v) | Ethyl acetate/ethanol at 2:1 and 1:1 ratios (v/v) | [59] |
Human plasma | 1-Butanol/methanol (1:1 and 3:1, v/v) and chloroform/methanol (2:1, v/v) | 1-Butanol/methanol (1:1, v/v) | [13] |
Krill meal | Acetone, ethanol, isopropanol, ethyl acetate, isohexane, n-hexane, and subcritical butane | Ethanol and isopropanol | [60] |
Legumes | Chloroform/methanol (Folch method), n-hexane/isopropanol and n-hexane/acetone | Chloroform/methanol | [61] |
Milk | Butanol/methanol (3:1 and 1:1, v/v), butanol/methanol/chloroform, 3:5:4 v/v), and chloroform/methanol (2:1, v/v; Folch method) | Butanol/methanol/chloroform (3:5:4, v/v) | [62] |
Microalga Tetraselmis sp. M8 | Chloroform/methanol (1:2, v/v), dichloromethane/methanol (2:1, v/v), isopropanol/n-hexane (1:1.25, v/v) | Dichloromethane/methanol (2:1, v/v) | [26] |
Spent coffee grounds | Ethyl acetate, ethanol, isopropanol, and n-propanol | Ethanol | [63] |
Thraustochytrids | Chloroform, diethyl ether, ethanol, heptane, n-hexane, isopropanol, methylene chloride, methanol, toluene, and in two solvent combinations at ratios of 1:1, 1:2, and 2:1 (v/v) | Chloroform/methanol (2:1, v/v) | [25] |
Sample | Optimized Parameters | Reference |
---|---|---|
Argan seeds | The pressure of 297.71 bar and a temperature of 44.63 °C | [82] |
Argan seeds | The pressure of 400 bar and temperature 45 °C | [83] |
Grape seeds | The pressure of 500 bar and a temperature of 50 °C, and solvent flow of 8 g/min | [84] |
Microalage (20% water) | The pressure of 30 MPa, the temperature of 60 °C, with 0.4 kg/h of CO2 and 5% of co-solvent (ethanol) | [81] |
Microalga Tetraselmis sp. M8 | Initial soaking period of 12 h (150 bar, 40 °C), flushing cycle (5 mL/min Flow rate, 30 min) | [26] |
Oats (Avena sativa L.) | The pressure of 550 bar, the temperature of 47.7 °C, and large particle size (>250 μm) | [85] |
Soybean seeds | Extraction with CO2/dimethyl ether (DME; 14:1, v/v) at 20 MPa, 40–60 °C | [86] |
Sample | Desired Lipid Class | Sorbent | Separation Principle | Reference |
---|---|---|---|---|
Clam (Corbicula fluminea) | Phospholipids | Titania-coated fibrous silica (TiO2/KCC-1) | Hydrophilic interaction | [103] |
Extra virgin olive oil | Phospholipids | Weak anionic exchange phase containing charged piperazine units, or graphitized carbon black | Ionic and lipophilic interactions | [104] |
French fries | Monounsaturated fatty acid methyl esters | Silver (Ag) nanoparticles-coated monolithic | Ag+-like affinity interaction | [105] |
Human breast milk | Phospholipids and glycerolipids | Mixture of C18 and zirconia-coated silica gel | Hydrophobic and Lewis acid/base interaction | [106] |
Hypophthalmichthys nobilis | Phospholipids | Sulfobetaine (3-(trimethylammonio)propane-1-sulfonate) | Zwitterionic hydrophilic interaction | [107] |
Milk powder-based products | Oxysterols | C18 silica | Hydrophilic interaction | [108] |
Extraction Method | Advantages | Disadvantages | References |
---|---|---|---|
Accelerated solvent extraction (ASE) |
|
| [80,110] |
Green solvent assisted extraction |
|
| [31,63,73,111,112] |
Maceration and solvent extraction |
|
| [113,114,115] |
Soxhlet extraction |
|
| [77,78,79] |
Supercritical CO2 |
|
| [81,82,84,85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.-S. Advances in Lipid Extraction Methods—A Review. Int. J. Mol. Sci. 2021, 22, 13643. https://doi.org/10.3390/ijms222413643
Saini RK, Prasad P, Shang X, Keum Y-S. Advances in Lipid Extraction Methods—A Review. International Journal of Molecular Sciences. 2021; 22(24):13643. https://doi.org/10.3390/ijms222413643
Chicago/Turabian StyleSaini, Ramesh Kumar, Parchuri Prasad, Xiaomin Shang, and Young-Soo Keum. 2021. "Advances in Lipid Extraction Methods—A Review" International Journal of Molecular Sciences 22, no. 24: 13643. https://doi.org/10.3390/ijms222413643