Detailed Geogenic Radon Potential Mapping Using Geospatial Analysis of Multiple Geo-Variables—A Case Study from a High-Risk Area in SE Ireland
Abstract
:1. Introduction
Study Area Description
2. Materials and Methods
2.1. Airborne Radiometric Data
2.2. Soil Gas Radon and Soil Gas Permeability Test
2.3. Distance from Fault Lines
2.4. Geostatistical Model Setting and Diagnostic Tests
3. Results
3.1. Preliminary Statistics
3.2. Analysis of the OLS Model
3.3. Validity of the Model
3.4. Geogenic Radon Potential Mapping
3.5. Comparison of Predicted Radon Potentials with Neznal’s Radon Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Örgün, Y.; Altınsoy, N.; Gültekin, A.; Karahan, G.; Çelebi, N. Natural radioactivity levels in granitic plutons and groundwaters in Southeast part of Eskisehir, Turkey. Appl. Radiat. Isot. 2005, 63, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Hurley, B.W. Natural Radioactivity in the Geologic Environment; National Nuclear Security Administration, Nevada Site Office: Las Vegas, NE, USA, 2009.
- Nazaroff, W. Radon transport from soil to air. Rev. Geophys. 1992, 30, 137–160. [Google Scholar] [CrossRef]
- Dentoni, V.; Da Pelo, S.; Aghdam, M.M.; Randaccio, P.; Loi, A.; Careddu, N.; Bernardini, A. Natural radioactivity and radon exhalation rate of Sardinian dimension stones. Constr. Build. Mater. 2020, 247, 118377. [Google Scholar] [CrossRef]
- Demoury, C.; Ielsch, G.; Hemon, D.; Laurent, O.; Laurier, D.; Clavel, J.; Guillevic, J. A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France. J. Environ. Radioact. 2013, 126, 216–225. [Google Scholar] [CrossRef]
- Aghdam, M.M.; Crowley, Q.; Rocha, C.; Dentoni, V.; Da Pelo, S.; Long, S.; Savatier, M. A Study of Natural Radioactivity Levels and Radon/Thoron Release Potential of Bedrock and Soil in Southeastern Ireland. Int. J. Environ. Res. Public Health 2021, 18, 2709. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ke, H.; Ouyang, C.; Yu, X.; Liu, Y.; Wang, F.; Li, W. Investigation of the indoor 222Rn and 220Rn levels in the residential environment and estimation of the annual effective radiation dose for ordinary residents. PLoS ONE 2021, 16, e0253463. [Google Scholar] [CrossRef]
- O’Connor, C.; Currivan, L.; Cunningham, N.; Kelleher, K. Radiation Doses Received by the Irish Population; Radiological Protection Institute of Ireland (Ireland): Dublin, Ireland, 2014. [Google Scholar]
- Ciotoli, G.; Voltaggio, M.; Tuccimei, P.; Soligo, M.; Pasculli, A.; Beaubien, S.; Bigi, S. Geographically weighted regression and geostatistical techniques to construct the geogenic radon potential map of the Lazio region: A methodological proposal for the European Atlas of Natural Radiation. J. Environ. Radioact. 2017, 166, 355–375. [Google Scholar] [CrossRef] [PubMed]
- Papatheodorou, S.; Yao, W.; Vieira, C.L.; Li, L.; Wylie, B.J.; Schwartz, J.; Koutrakis, P. Residential radon exposure and hypertensive disorders of pregnancy in Massachusetts, USA: A cohort study. Environ. Int. 2021, 146, 106285. [Google Scholar] [CrossRef]
- Cori, L.; Curzio, O.; Donzelli, G.; Bustaffa, E.; Bianchi, F. A Systematic Review of Radon Risk Perception, Awareness, and Knowledge: Risk Communication Options. Sustainability 2022, 14, 10505. [Google Scholar] [CrossRef]
- Tollefsen, T.; Cinelli, G.; Bossew, P.; Gruber, V.; De Cort, M. From the European indoor radon map towards an atlas of natural radiation. Radiat. Prot. Dosim. 2014, 162, 129–134. [Google Scholar] [CrossRef]
- Giustini, F.; Ciotoli, G.; Rinaldini, A.; Ruggiero, L.; Voltaggio, M. Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Sci. Total Environ. 2019, 661, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Gruber, V.; Bossew, P.; De Cort, M.; Tollefsen, T. The European map of the geogenic radon potential. J. Radiol. Prot. 2013, 33, 51–60. [Google Scholar] [CrossRef]
- Elío, J.; Crowley, Q.; Scanlon, R.; Hodgson, J.; Long, S. Logistic regression model for detecting radon prone areas in Ireland. Sci. Total Environ. 2017, 599–600, 1317–1329. [Google Scholar] [CrossRef]
- Fronka, A. Indoor and soil gas radon simultaneous measurements for the purpose of detail analysis of radon entry pathways into houses. Radiat. Prot. Dosim. 2011, 145, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Fennell, S.G.; Mackin, G.M.; McGarry, A.T.; Pollard, D. Radon exposure in Ireland. In International Congress Series; Elsevier: Amsterdam, The Netherlands, 2002; Volume 1225, pp. 71–77. [Google Scholar]
- Elío, J.; Crowley, Q.; Scanlon, R.; Hodgson, J.; Long, S.; Cooper, M.; Gallagher, V. Application of airborne radiometric surveys for large-scale geogenic radon potential classification. J. Eur. Radon Assoc. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- CAAS Environmental Services Ltd. Landscape Appraisal of County Kilkenny; CAAS Environmental Services Ltd.: Dublin, Ireland, 2003. [Google Scholar]
- McAulay, I.; McLaughlin, J. Indoor natural radiation levels in Ireland. Sci. Total Environ. 1985, 45, 319–325. [Google Scholar] [CrossRef] [PubMed]
- McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.; Duffy, J.T.; Colgan, P.A. Radon in Dwellings the National Radon Survey Carlow, Donegal, Kildare, Kilkenny, Laois, Leitrim, Longford, Meath, Offaly, Roscommon, Sligo, Waterford, Westmeath and Wexford; Radiological Protection Institute of Ireland: Dublin, Ireland, 1997. [Google Scholar]
- Kropat, G.; Bochud, F.; Murith, C.; Gruson, M.P.; Baechler, S. Modeling of geogenic radon in Switzerland based on ordered logistic regression. J. Environ. Radioact. 2017, 166, 376–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smethurst, M.; Watson, R.; Baranwal, V.; Rudjord, A.; Finne, I. The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: A strong case for utilizing airborne data in large-scale radon potential mapping. J. Environ. Radioact. 2017, 166, 321–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgson, J.; Young, M. The Tellus airborne geophysical surveys and results. Unearthed 2016, 11–32. [Google Scholar] [CrossRef]
- Mitáš, L.; Mitasova, H. General variational approach to the interpolation problem. Comput. Math. Appl. 1988, 16, 983–992. [Google Scholar] [CrossRef]
- Neznal, M.; Neznal, M.; Matolin, M.; Barnet, I.; Miksova, J. The New Method for Assessing the Radon Risk of Building Sites; Czech Geological Survey: Brno-střed-Staré Brno, Czech Republic, 2004. [Google Scholar]
- Drolet, J.-P.; Martel, R. Distance to faults as a proxy for radon gas concentration in dwellings. J. Environ. Radioact. 2016, 152, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Barnet, I. Radon in Geological Environment: Czech Experience; Czech Geol. Surv.: Brno-střed-Staré Brno, Czech Republic, 2008. [Google Scholar]
- Kleinbaum, D.; Kupper, L.L.; Muller, K.; Nizam, A. Dummy variables in regression. In Applied Regression Analysis and Other Multivariable Methods; Cole Publishing Co.: Pacific Grove, CA, USA, 1998. [Google Scholar]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- White, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 1980, 48, 817–838. [Google Scholar] [CrossRef]
- Durbin, J.; Watson, G.S. Testing for Serial Correlation in Least Squares Regression. III. Biometrika 1971, 58, 409–428. [Google Scholar] [CrossRef]
- Addinsoft. XLSTAT Statistical and Data Analysis Solutions; Addinsoft: Long Island, NY, USA, 2019. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Tzortzis, M.; Tsertos, C. Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. J. Environ. Radioact. 2004, 77, 325–338. [Google Scholar] [CrossRef] [Green Version]
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources and Effects of Ionizing Radation Annex B, Exposures from Natural Radiation Sources; United Nations Scientific Committee on the Effects of Atomic Radiation: Vienna, Austria, 2000. [Google Scholar]
- Krivoruchko, K. Empirical Bayesian Kriging Implemented in ArcGIS Geostatistical Analyst; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Manohar, S.; Meijer, H.; Herber, M. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides. Atmos. Environ. 2013, 81, 399–412. [Google Scholar] [CrossRef]
- Melintescu, A.; Chambers, S.; Crawford, J.; Williams, A.; Zorila, B.; Galeriu, D. Radon-222 related influence on ambient gamma dose. J. Environ. Radioact. 2018, 189, 67–78. [Google Scholar] [CrossRef]
- Mercier, J.-F.; Tracy, B.; D’Amours, R.; Chagnon, F.; Hoffman, I.; Korpach, E.; Johnson, S.; Ungar, R. Increased environmental gamma-ray dose rate during precipitation: A strong correlation with contributing air mass. J. Environ. Radioact. 2009, 100, 527–533. [Google Scholar] [CrossRef]
- Voltaggio, M. Radon progeny in hydrometeors at the earth’s surface. Radiat. Prot. Dosim. 2011, 150, 334–341. [Google Scholar] [CrossRef]
- Zeng, C.; Lai, W.; Feng, X.; Fan, C.; Wu, J.; Gu, R. Overview of Radon Background Correction Technology for Airborne Gamma Spectrometry. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 281. [Google Scholar] [CrossRef]
Statistic | eU (ppm) | eTh (ppm) | ADRair (nGy h−1) | SGR (kBq m−3) |
---|---|---|---|---|
Number of data | 40 | |||
Minimum | 2.42 | 7.53 | 124.81 | 5.60 |
Maximum | 17.37 | 13.54 | 214.45 | 236.00 |
1st Quartile | 4.44 | 8.60 | 150.62 | 57.90 |
Median | 4.94 | 9.61 | 154.65 | 74.30 |
3rd Quartile | 5.47 | 10.38 | 159.83 | 109.25 |
Mean | 5.39 | 9.63 | 154.70 | 87.96 |
Standard deviation | 2.25 | 1.26 | 14.14 | 49.34 |
Skewness (Pearson) | 3.78 | 0.64 | 1.50 | 0.88 |
Kurtosis (Pearson) | 17.44 | 0.54 | 6.29 | 0.64 |
Geometric mean | 5.10 | 9.55 | 154.09 | 71.95 |
Geometric standard deviation | 1.36 | 1.14 | 1.09 | 2.10 |
Shapiro–Wilk test (W) | 0.62 | 0.96 | 0.85 | 0.94 |
Reject normality (p < 0.0001) | Normal distribution (p = 0.22) | Reject normality (p < 0.0001) | Reject normality (p = 0.04) |
Source | Coefficient | SE | t | Pr > |t| | VIF |
---|---|---|---|---|---|
Intercept | 78.81 | 131.03 | 0.60 | 0.55 | - |
DTM | −0.15 | 0.13 | −1.18 | 0.25 | 1.44 |
DF | −0.03 | 0.03 | −1.09 | 0.28 | 1.55 |
eU | 12.53 | 4.77 | 2.63 | 0.01 * | 4.60 |
ADRair | 0.53 | 0.79 | 0.67 | 0.51 | 5.01 |
eTh | 11.31 | 5.46 | 2.07 | 0.05 * | 1.88 |
Log P | 18.39 | 6.32 | 2.91 | 0.01 * | 1.02 |
Parameter | Value | p-Value |
---|---|---|
Observations | 40 | |
R2 | 0.66 | |
Adjusted R2 | 0.60 | |
AICs | 282.63 | |
Fisher’s F test | 10.72 (DoF = 6) | <0.0001 |
Durbin–Watson test (DW) | 2.31 | 0.50 |
Breusch–Pagan test (LM) | 5.95 | 0.43 |
White test (LM) | 26.97 | 0.47 |
Jarque–Bera test | 3.06 | 0.22 |
Parameter | Value |
---|---|
Count | 40 |
Mean Error | 1.98 |
Root Mean Square Error | 48.38 |
Average Standard Error | 50.69 |
Mean Standardised Error | 0.035 |
Root Mean Square Standardised Error | 0.96 |
Summary Statistics | ||||||
---|---|---|---|---|---|---|
Variable | Observations | Minimum | Maximum | Mean | Std. Deviation | |
RP | 40 | 2.21 | 166.63 | 54.19 | 39.56 | |
Descriptive Statistics for the Intervals (RP) | ||||||
RI | RP | Frequency | Relative frequency | Density (Data) | Density (Distribution) | |
Lower bound | Upper bound | |||||
Low | 2 | 10 | 3 | 0.075 | 0.009 | 0.038 |
Medium | 10 | 35 | 13 | 0.325 | 0.013 | 0.182 |
High | 35 | 70 | 11 | 0.275 | 0.008 | 0.341 |
70 | 140 | 12 | 0.300 | 0.004 | 0.330 | |
140 | 170 | 1 | 0.025 | 0.001 | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghdam, M.M.; Dentoni, V.; Da Pelo, S.; Crowley, Q. Detailed Geogenic Radon Potential Mapping Using Geospatial Analysis of Multiple Geo-Variables—A Case Study from a High-Risk Area in SE Ireland. Int. J. Environ. Res. Public Health 2022, 19, 15910. https://doi.org/10.3390/ijerph192315910
Aghdam MM, Dentoni V, Da Pelo S, Crowley Q. Detailed Geogenic Radon Potential Mapping Using Geospatial Analysis of Multiple Geo-Variables—A Case Study from a High-Risk Area in SE Ireland. International Journal of Environmental Research and Public Health. 2022; 19(23):15910. https://doi.org/10.3390/ijerph192315910
Chicago/Turabian StyleAghdam, Mirsina Mousavi, Valentina Dentoni, Stefania Da Pelo, and Quentin Crowley. 2022. "Detailed Geogenic Radon Potential Mapping Using Geospatial Analysis of Multiple Geo-Variables—A Case Study from a High-Risk Area in SE Ireland" International Journal of Environmental Research and Public Health 19, no. 23: 15910. https://doi.org/10.3390/ijerph192315910
APA StyleAghdam, M. M., Dentoni, V., Da Pelo, S., & Crowley, Q. (2022). Detailed Geogenic Radon Potential Mapping Using Geospatial Analysis of Multiple Geo-Variables—A Case Study from a High-Risk Area in SE Ireland. International Journal of Environmental Research and Public Health, 19(23), 15910. https://doi.org/10.3390/ijerph192315910