Meteorological Approach in the Identification of Local and Remote Potential Sources of Radon: An Example in Northern Iberian Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Radon Measurements
2.3. Meteorological Parameters
2.4. Air Mass Trajectories and Cluster, TSA and PSFC Methods
3. Results and Discussion
3.1. Characterization of 222Rn Concentrations
3.2. Baseline and Maximum Daily 222Rn Concentrations: Daily Differences
3.3. Meteorological Link with Daily Cycles: From Local to Synoptic
3.4. Identification of Potential Sources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- European Commission; Joint Research Centre; Cinelli, G.; De Cort, M.; Tollefsen, T. (Eds.) European Atlas of Natural Radiation; Publication Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-08259-0. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Source and Effects of Ionizing Radiation, Volume I, Annex B; United Nations: New York, NY, USA, 2008; Available online: https://www.unscear.org/unscear/uploads/documents/publications/UNSCEAR_2008_Annex-B-CORR2.pdf_1.html (accessed on 25 November 2022).
- World Health Organization. Handbook on Indoor Radon; WHO: Geneva, Switzerland, 2009; Available online: https://www.who.int/publications/i/item/9789241547673A (accessed on 25 November 2022).
- United Nations Scientific Committee on the Effects of Atomic Radiation. 2006 Report to the General Assembly, with Scientific Annexes. Effects of Ionizing Radiation, Vol. I, Scientific Annex A, Epidemiological Studies of Radiation and Cancer; United Nations: New York, NY, USA, 2008; Available online: http://www.unscear.org/unscear/en/publications/2006_1.html (accessed on 25 November 2022).
- Hernández-Ceballos, M.A.; Vargas, A.; Arnold, D.; Bolívar, J.P. The role of mesoscale meteorology in modulating the 222Rn concentrations in Huelva (Spain)—Impact of phosphogypsum piles. J. Environ. Radioact. 2015, 145, 1–9. [Google Scholar] [CrossRef]
- Vargas, A.; Arnold, D.; Adame, J.A.; Grossi, C.; Hernández Ceballos, M.A.; Bolívar, J.P. Analysis of the vertical radon structure at the Spanish “El arenosillo” tower station. J. Environ. Radioact. 2015, 139, 1–17. [Google Scholar] [CrossRef]
- Chambers, S.D.; Williams, A.G.; Crawford, J.; Griffiths, A.D. On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmos. Chem. Phys. 2015, 15, 1175–1190. [Google Scholar] [CrossRef] [Green Version]
- Levin, I.; Karstens, U.; Hammer, S.; Dellacoletta, J.; Maier, F.; Gachkivskyi, M. Limitations of the radon tracer method (RTM) to estimate regional greenhouse gas (GHG) emissions—A case study for methane in Heidelberg. Atmos. Chem. Phys. 2021, 21, 17907–17926. [Google Scholar] [CrossRef]
- Grossi, C.; Vogel, F.R.; Curcoll, R.; Àgueda, A.; Vargas, A.; Rodó, X.; Morguí, J.A. Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer. Atmos. Chem. Phys. 2018, 18, 5847–5860. [Google Scholar] [CrossRef] [Green Version]
- Celikovic, I.T.; Pantelic, G.; Vulkanac, I.; Nikolic, J.; Zivanovic, M.; Cinelli, G.; Gruber, V.; Baumann, S.; Quindos, L.; Rabago, D. Outdoor radon as a tool to estimate radón priority areas—A literature overview. Int. J. Environ. Res. Public Health 2022, 19, 662. [Google Scholar] [CrossRef]
- Gutiérrez-Álvarez, I.; Guerrero, J.L.; Martón, J.E.; Adame, J.A.; Vargas, A.; Bolívar, J.P. Radon transport events associated with the impact of a NORM repository in the SW of Europe. Environ. Pollut. 2021, 289, 117963. [Google Scholar] [CrossRef]
- Röttger, S.; Röttger, A.; Grossi, C.; Vargas, A.; Karstens, U.; Cinelli, G.; Chung, E.; Kikaj, D.; Rennick, C.; Mertes, F.; et al. Radonmetrology for use in climate change observation and radiation protection at the environmental level. Adv. Geosci. 2022, 57, 37–47. [Google Scholar] [CrossRef]
- Victor, N.J.; Singh, D.; Singh, R.P.; Singh, R.; Kamra, A.K. Diurnal and seasonal variations of radon (222Rn) and their dependence on soil moisture and vertical stability of the lower atmosphere at Pune, India. J. Atmos. Sol. Terr. Phys. 2019, 195, 105118. [Google Scholar] [CrossRef]
- Arnold, D.; Vargas, A.; Vermeulen, A.T.; Verheggen, B.; Seibert, P. Analysis of radon origin by backward atmospheric transport modelling. Atmos. Environ. 2010, 44, 494–502. [Google Scholar] [CrossRef]
- Hafez, Y.I. Understanding radon (222Rn) transport in one and multi-layer soils using analytical and finite element modeling. J. Hydrol. 2022, 610, 127803. [Google Scholar] [CrossRef]
- Yan, R.; Woith, H.; Wang, R.; Wang, G. Decadal radon cycles in a hot spring. Sci. Rep. 2017, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Chu, B.; Liu, Y.; Ma, Q.; Ma, J.; He, H.; Wang, G.; Cheng, S.; Wang, X. Distinct potential aerosol masses under different scenarios of transport at a suburban site of Beijing. J. Environ. Sci. 2016, 39, 52–61. [Google Scholar] [CrossRef]
- Li, H.; He, Q.; Liu, X. Identification of Long-Range Transport Pathways and Potential Source Regions of PM2.5 and PM10 at Akedala Station, Central Asia. Atmosphere 2020, 11, 1183. [Google Scholar] [CrossRef]
- Dimitrou, K.; Kassomenos, P. Background concentrations of benzene, potential long range transport influences and corresponding cancer risk in four cities of central Europe, in relation to air mass origination. J. Environ. Manag. 2020, 262, 110374. [Google Scholar] [CrossRef]
- Karstens, U.; Schwingshackl, C.; Schmithüsen, D.; Levin, I. A process based 222Radon flux map for Europe and its comparison to long-term observations. Atmos. Chem. Phys. 2015, 21, 12845–12865. [Google Scholar] [CrossRef] [Green Version]
- Alegría, N.; Hernández-Ceballos, M.A.; Herranz, M.; Idoeta, R.; Legarda, F. Meteorological Factors Controlling 7Be Activity Concentrations in the Atmospheric Surface Layer in Northern Spain. Atmosphere 2020, 11, 1340. [Google Scholar] [CrossRef]
- Alegría, N. Tesis: Desarrollo de Niveles de Alarma y Análisis de Transitorios en Estaciones de Vigilancia Radiológica Automática. 2008. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=212064 (accessed on 5 October 2022).
- Su, L.; Yuan, Z.; Fung, Y.C.H.; Lau, A.K.H. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 2015, 506–507, 527–537. [Google Scholar] [CrossRef]
- Chambers, S.D.; Williams, A.G.; Zahorowski, W.; Griffiths, A.; Crawford, J. Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere. Tellus B 2011, 63, 843–859. [Google Scholar] [CrossRef]
- Zimnoch, M.; Wach, P.; Chmura, P.; Gorczyca, Z.; Rozanski, K.; Godlowska, J.; Mazur, J.; Kozak, K.; Jericevic, A. Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe. Atmos. Chem. Phys. 2014, 14, 9567–9581. [Google Scholar] [CrossRef]
- Chambers, S.D.; Galeriu, D.; Williams, A.G.; Melintescu, A.; Griffiths, A.D.; Crawford, J.; Dyer, L.; Duma, M.; Zorila, B. Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state. J. Environ. Radioact. 2016, 39, 52–61. [Google Scholar] [CrossRef]
- Zahorowski, W.; Chambers, S.D.; Wang, T.; Kang, C.H.; Uno, I.; Poon, S.; Oh, S.N.; Wcrczynski, S.; Kim, J.; Henderson-Sellers, A. Radon-222 in boundary layer and free tropospheric continental outflow events at three ACE-ASIA sites. Tellus B 2005, 57, 124–140. [Google Scholar] [CrossRef]
- Jorba, O.; Pérez, C.; Rocadenbosch, F.; Baldasano, J.M. Cluster analysis of 4-day back trajectories arriving in the Barcelona area, Spain, from 1997 to 2002. J. Appl. Meteorol. 2004, 43, 887–901. [Google Scholar] [CrossRef]
- Baeza, A.; Corbacho, J.A.; Rodríguez, A.; Galván, J.; García-Tenorio, R.; Manjón, G.; Mantero, J.; Vioque, I.; Arnold, D.; Grossi, C.; et al. Influence of the Fukushima Dai-ichi nuclear accidento on Spanish environmental radioactivity levels. J. Environ. Radioact. 2012, 114, 138–145. [Google Scholar] [CrossRef]
- Hernández-Ceballos, M.A.; Adame, J.A.; Bolívar, J.P.; De la Morena, B.A. Vertical behavior and meteorological properties of air masses in the southwest of the Iberian Peninsula (1997–2007). Meteorol. Atmos. Phys. 2013, 119, 163–175. [Google Scholar] [CrossRef]
- Izquierdo, R.; Alarcón, M.; Aguillaume, L.; Àvila, A. Effects of teleconnection patterns on the atmospheric routes, precipitation and deposition amounts in the north-eastern Iberian Peninsula. Atmos. Environ. 2014, 89, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Ashbaugh, L. The impact of trajectory starting heights on the MURA trajectory source apportionment (TSA) method. Atmos. Environ. 2007, 41, 7022–7036. [Google Scholar] [CrossRef]
- Li, M.; Huang, X.; Zhu, L.; Li, J.; Song, Y.; Cai, X.; Xie, S. Analysis of the transport pathways and potential sources of PM10 in Shanghai based on three methods. Sci. Total Environ. 2012, 414, 525–534. [Google Scholar] [CrossRef]
- Fleming, Z.L.; Monks, P.S.; Manning, A.J. Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos. Res. 2012, 104–105, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Hondula, D.M.; Davis, R.E. Decline in wintertime air-mass transition frequencies in the USA. Clim. Res. 2011, 46, 121–136. [Google Scholar] [CrossRef]
- Vinuesa, J.F.; Basu, S.; Galmarini, S. The diurnal evolution of 222Rn and its progeny in the atmospheric boundary layer during the Wangara experiment. Atmos. Chem. Phys. 2007, 7, 5003–5019. [Google Scholar] [CrossRef] [Green Version]
- Lozano, R.L.; Hernández-Ceballos, M.A.; San Miguel, E.G.; Adame, J.A.; Bolívar, J.P. Meteorological factors influencing on surface air 7Be and 210Pb concentrations from southwestern Iberian Peninsula. Atmos. Environ. 2012, 63, 168–178. [Google Scholar] [CrossRef]
- Brattich, E.; Hernández-Ceballos, M.A.; Cinelli, G.; Tositti, L. Analysis of 210Pb peak values at Mt. Cimone (1998–2011). Atmo. Environ. 2015, 112, 136–147. [Google Scholar] [CrossRef]
- Fujiyoshi, Y.; Yamashita, K.; Fujiwara, C. Visualization of streaks, thermals and waves in the atmospheric boundary layer. J. Vis. 2006, 9, 359. [Google Scholar] [CrossRef]
- Baciu, A.C. Radon and thoron progeny concentration variability in relation to meteorological conditions at Bucharest (Romania). J. Environ. Radioact. 2005, 83, 171–189. [Google Scholar] [CrossRef]
- Griffiths, A.D.; Zahorowski, W.; Element, A.; Werczynski, S. A map of radon flux at the Australian land surface. Atmos. Chem. Phys. 2010, 10, 8969–8982. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Ceballos, M.A.; Legarda, F.; Alegría, N. Analysis of Alpha Activity Levels and Dependence on Meteorologycal Factors over a Complex Terrain in Northern Iberian Peninsula (2014–2018). Int. J. Environ. Res. Public Health 2020, 17, 7967. [Google Scholar] [CrossRef]
- Miao, T.; Pan, T. A multiphysics model for evaluating electrokinetic remediation of nuclear waste-contaminated soils. Water Air Soil Pollut. 2015, 77, 226. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, W.; Wu, L. Effect of Mesoscale Oceanic Eddies on Extratropical Cyclogenesis: A tracking Approach. JRG Atmos. 2019, 124, 6411–6422. [Google Scholar] [CrossRef] [Green Version]
- González-Aparicio, I.; Hidalgo, J. Dynamically based future daily and seasonal temperatura scenarios analysis for the northern Iberian Peninsula. Int. J. Climatol. 2012, 32, 1825–1833. [Google Scholar] [CrossRef]
- Arrillaga, J.A.; Yagüe, C.; Sastre, M.; Román-Cascón, C. A characterisation of sea breeze events in the Eastern Cantabrian coast (Spain) from observational data and WRF simulations. Atmos. Res. 2016, 181, 265–280. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Ceballos, M.Á.; Alegría, N.; Peñalva, I.; Muñoz, J.M.; De la Torre, A.; Legarda, F.; Cinelli, G. Meteorological Approach in the Identification of Local and Remote Potential Sources of Radon: An Example in Northern Iberian Peninsula. Int. J. Environ. Res. Public Health 2023, 20, 917. https://doi.org/10.3390/ijerph20020917
Hernández-Ceballos MÁ, Alegría N, Peñalva I, Muñoz JM, De la Torre A, Legarda F, Cinelli G. Meteorological Approach in the Identification of Local and Remote Potential Sources of Radon: An Example in Northern Iberian Peninsula. International Journal of Environmental Research and Public Health. 2023; 20(2):917. https://doi.org/10.3390/ijerph20020917
Chicago/Turabian StyleHernández-Ceballos, Miguel Ángel, Natalia Alegría, Igor Peñalva, Jose Miguel Muñoz, Alejandro De la Torre, Fernando Legarda, and Giorgia Cinelli. 2023. "Meteorological Approach in the Identification of Local and Remote Potential Sources of Radon: An Example in Northern Iberian Peninsula" International Journal of Environmental Research and Public Health 20, no. 2: 917. https://doi.org/10.3390/ijerph20020917
APA StyleHernández-Ceballos, M. Á., Alegría, N., Peñalva, I., Muñoz, J. M., De la Torre, A., Legarda, F., & Cinelli, G. (2023). Meteorological Approach in the Identification of Local and Remote Potential Sources of Radon: An Example in Northern Iberian Peninsula. International Journal of Environmental Research and Public Health, 20(2), 917. https://doi.org/10.3390/ijerph20020917