Towards a Risk-Based Follow-Up Surveillance Imaging Schedule for Children and Adolescents with Low-Grade Glioma
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Description of Studies
3.1.1. Definitions
3.1.2. Description of Studies According to the Location of the Tumor
3.1.3. Description of Studies According to Extent of Tumor Resection
3.1.4. Description of Studies According to Age
3.1.5. Description of Studies According to Histology
3.1.6. Description of Studies According to Molecular Findings
3.1.7. Description of Studies According to Radiological Findings
3.2. Time of Recurrence
3.3. Presence of Symptoms at Diagnosis and at Recurrence/Progression
3.4. Regression
3.5. Malignant Transformation
3.6. Proposed Follow-Up Schemes
3.7. Health Economics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Price, M.; Ryan, K.; Edelson, J.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncology 2022, 24 (Suppl. S3), iii1–iii38. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016–2020. Neuro-Oncology 2023, 25 (Suppl. S4), iv1–iv99. [Google Scholar] [CrossRef] [PubMed]
- Bandopadhayay, P.; Bergthold, G.; London, W.B.; Goumnerova, L.C.; Morales La Madrid, A.; Marcus, K.J.; Guo, D.; Ullrich, N.J.; Robison, N.J.; Chi, S.N.; et al. Long-term outcome of 4040 children diagnosed with pediatric low-grade gliomas: An analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr. Blood Cancer 2014, 61, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Krishnatry, R.; Zhukova, N.; Guerreiro Stucklin, A.S.; Pole, J.D.; Mistry, M.; Fried, I.; Ramaswamy, V.; Bartels, U.; Huang, A.; Laperriere, N.; et al. Clinical and treatment factors determining long-term outcomes for adult survivors of childhood low-grade glioma: A population-based study. Cancer 2016, 122, 1261–1269. [Google Scholar] [CrossRef]
- Gnekow, A.K.; Falkenstein, F.; von Hornstein, S.; Zwiener, I.; Berkefeld, S.; Bison, B.; Warmuth-Metz, M.; Driever, P.H.; Soerensen, N.; Kortmann, R.D.; et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro-Oncology 2012, 14, 1265–1284. [Google Scholar] [CrossRef]
- Goldman, L.; Siddiqui, E.M.; Khan, A.; Jahan, S.; Rehman, M.U.; Mehan, S.; Sharma, R.; Budkin, S.; Kumar, S.N.; Sahu, A.; et al. Understanding Acquired Brain Injury: A Review. Biomedicines 2022, 10, 25–37. [Google Scholar] [CrossRef]
- Fangusaro, J.; Jones, D.T.; Packer, R.J.; Gutmann, D.H.; Milde, T.; Witt, O.; Mueller, S.; Fisher, M.J.; Hansford, J.R.; Tabori, U.; et al. Pediatric low-grade glioma: State-of-the-art and ongoing challenges. Neuro-Oncology 2023, 26, 25–37. [Google Scholar] [CrossRef]
- Bouffet, E.; Hansford, J.R.; Garrè, M.L.; Hara, J.; Plant-Fox, A.; Aerts, I.; Locatelli, F.; van der Lugt, J.; Papusha, L.; Sahm, F.; et al. Dabrafenib plus Trametinib in Pediatric Glioma with BRAF V600 Mutations. N. Engl. J. Med. 2023, 389, 1108–1120. [Google Scholar] [CrossRef]
- Kilburn, L.B.; Khuong-Quang, D.-A.; Hansford, J.R.; Landi, D.; van der Lugt, J.; Leary SE, S.; Driever, P.H.; Bailey, S.; Perreault, S.; McCowage, G.; et al. The type II RAF inhibitor tovorafenib in relapsed/refractory pediatric low-grade glioma: The phase 2 FIREFLY-1 trial. Nat. Med. 2024, 30, 207–217. [Google Scholar] [CrossRef]
- van Tilburg, C.M.; Kilburn, L.B.; Perreault, S.; Schmidt, R.; Azizi, A.A.; Cruz-Martínez, O.; Zápotocký, M.; Scheinemann, K.; Meeteren, A.; Sehested, A.; et al. LOGGIC/FIREFLY-2: A phase 3, randomized trial of tovorafenib vs. chemotherapy in pediatric and young adult patients with newly diagnosed low-grade glioma harboring an activating RAF alteration. BMC Cancer 2024, 24, 147. [Google Scholar] [CrossRef]
- Kramer, E.D.; Vezina, L.G.; Packer, R.J.; Fitz, C.R.; Zimmerman, R.A.; Cohen, M.D. Staging and surveillance of children with central nervous system neoplasms: Recommendations of the Neurology and Tumor Imaging Committees of the Children’s Cancer Group. Pediatr. Neurosurg. 1994, 20, 254–262, discussion 262–253. [Google Scholar] [CrossRef] [PubMed]
- Gnekow, A.K.; Kandels, D.; Tilburg, C.V.; Azizi, A.A.; Opocher, E.; Stokland, T.; Driever, P.H.; Schouten-van Meeteren AY, N.; Thomale, U.W.; Schuhmann, M.U.; et al. SIOP-E-BTG and GPOH Guidelines for Diagnosis and Treatment of Children and Adolescents with Low Grade Glioma. Klin. Padiatr. 2019, 231, 107–135. [Google Scholar] [CrossRef] [PubMed]
- Goebel, A.-M.; Gnekow, A.K.; Kandels, D.; Witt, O.; Schmidt, R.; Hernáiz Driever, P. Natural History of Pediatric Low-Grade Glioma Disease—First Multi-State Model Analysis. J. Cancer 2019, 10, 6314–6326. [Google Scholar] [CrossRef] [PubMed]
- Mirow, C.; Pietsch, T.; Berkefeld, S.; Kwiecien, R.; Warmuth-Metz, M.; Falkenstein, F.; Diehl, B.; von Hornstein, S.; Gnekow, A.K. Children < 1 year show an inferior outcome when treated according to the traditional LGG treatment strategy: A report from the German multicenter trial HIT-LGG 1996 for children with low grade glioma (LGG). Pediatr. Blood Cancer 2014, 61, 457–463. [Google Scholar] [CrossRef]
- Ryall, S.; Zapotocky, M.; Fukuoka, K.; Nobre, L.; Guerreiro Stucklin, A.; Bennett, J.; Siddaway, R.; Li, C.; Pajovic, S.; Arnoldo, A.; et al. Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell 2020, 37, 569–583.e5. [Google Scholar] [CrossRef] [PubMed]
- Stokland, T.; Liu, J.F.; Ironside, J.W.; Ellison, D.W.; Taylor, R.; Robinson, K.J.; Picton, S.V.; Walker, D.A. A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: A population-based cohort study (CCLG CNS9702). Neuro-Oncology 2010, 12, 1257–1268. [Google Scholar] [CrossRef]
- Elbeshlawi, I.; AbdelBaki, M.S. Safety of Gadolinium Administration in Children. Pediatr. Neurol. 2018, 86, 27–32. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, H.; Weng, H.; Ma, D. Lasting effects of general anesthetics on the brain in the young and elderly: “mixed picture” of neurotoxicity, neuroprotection and cognitive impairment. J. Anesth. 2019, 33, 321–335. [Google Scholar] [CrossRef]
- Oyefiade, A.; Paltin, I.; De Luca, C.R.; Hardy, K.K.; Grosshans, D.R.; Chintagumpala, M.; Mabbott, D.J.; Kahalley, L.S. Cognitive Risk in Survivors of Pediatric Brain Tumors. J. Clin. Oncol. 2021, 39, 1718–1726. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
- Stock, A.; Hancken, C.V.; Kandels, D.; Kortmann, R.D.; Dietzsch, S.; Timmermann, B.; Pietsch, T.; Bison, B.; Schmidt, R.; Pham, M.; et al. Pseudoprogression Is Frequent After Front-Line Radiation Therapy in Pediatric Low-Grade Glioma: Results From the German Low-Grade Glioma Cohort. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 1190–1202. [Google Scholar] [CrossRef] [PubMed]
- Beneš, V., III; Zápotocký, M.; Libý, P.; Táborský, J.; Blažková, J., Jr.; Blažková, J., Sr.; Sumerauer, D.; Mišove, A.; Perníková, I.; Kynčl, M.; et al. Survival and functional outcomes in paediatric thalamic and thalamopeduncular low grade gliomas. Acta Neurochir (Wien) 2022, 164, 1459–1472. [Google Scholar] [CrossRef] [PubMed]
- McAuley, E.; Brophy, H.; Hayden, J.; Pettorini, B.; Parks, C.; Avula, S.; Mallucci, C.; Pizer, B. The benefit of surveillance imaging for paediatric cerebellar pilocytic astrocytoma. Childs Nerv. Syst. 2019, 35, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Zaazoue, M.A.; Manley, P.E.; Mehdar, M.A.; Ullrich, N.J.; Dasenbrock, H.H.; Chordas, C.A.; Goumnerova, L.C. Optimizing Postoperative Surveillance of Pediatric Low-Grade Glioma Using Tumor Behavior Patterns. Neurosurgery 2020, 86, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Campion, T.; Quirk, B.; Cooper, J.; Phipps, K.; Toescu, S.; Aquilina, K.; Green, K.; Hargrave, D.; Mankad, K. Surveillance imaging of grade 1 astrocytomas in children: Can duration and frequency of follow-up imaging and the use of contrast agents be reduced? Neuroradiology 2021, 63, 953–958. [Google Scholar] [CrossRef]
- Benesch, M.; Eder, H.G.; Sovinz, P.; Raith, J.; Lackner, H.; Moser, A.; Urban, C. Residual or recurrent cerebellar low-grade glioma in children after tumor resection: Is re-treatment needed? A single center experience from 1983 to 2003. Pediatr. Neurosurg. 2006, 42, 159–164. [Google Scholar] [CrossRef]
- Gunny, R.S.; Hayward, R.D.; Phipps, K.P.; Harding, B.N.; Saunders, D.E. Spontaneous regression of residual low-grade cerebellar pilocytic astrocytomas in children. Pediatr. Radiol. 2005, 35, 1086–1091. [Google Scholar] [CrossRef]
- Alford, R.; Gargan, L.; Bowers, D.C.; Klesse, L.J.; Weprin, B.; Koral, K. Postoperative surveillance of pediatric cerebellar pilocytic astrocytoma. J. Neurooncol. 2016, 130, 149–154. [Google Scholar] [CrossRef]
- Dorward, I.G.; Luo, J.; Perry, A.; Gutmann, D.H.; Mansur, D.B.; Rubin, J.B.; Leonard, J.R. Postoperative imaging surveillance in pediatric pilocytic astrocytomas. J. Neurosurg. Pediatr. 2010, 6, 346–352. [Google Scholar] [CrossRef]
- Kim, A.H.; Thompson, E.A.; Governale, L.S.; Santa, C.; Cahll, K.; Kieran, M.W.; Chi, S.N.; Ullrich, N.J.; Scott, R.M.; Goumnerova, L.C. Recurrence after gross-total resection of low-grade pediatric brain tumors: The frequency and timing of postoperative imaging. J. Neurosurg. Pediatr. 2014, 14, 356–364. [Google Scholar] [CrossRef]
- Udaka, Y.T.; Yeh-Nayre, L.A.; Amene, C.S.; VandenBerg, S.R.; Levy, M.L.; Crawford, J.R. Recurrent pediatric central nervous system low-grade gliomas: The role of surveillance neuroimaging in asymptomatic children. J. Neurosurg. Pediatr. 2013, 11, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Ogiwara, H.; Bowman, R.M.; Tomita, T. Long-term follow-up of pediatric benign cerebellar astrocytomas. Neurosurgery 2012, 70, 40–47, discussion 47–48. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, K.M.; Emnett, R.J.; Gao, F.; Perry, A.; Gutmann, D.H.; Leonard, J.R. Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol. 2009, 117, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Vassilyadi, M.; Shamji, M.F.; Tataryn, Z.; Keene, D.; Ventureyra, E. Postoperative surveillance magnetic resonance imaging for cerebellar astrocytoma. Can. J. Neurol. Sci. 2009, 36, 707–712. [Google Scholar] [CrossRef]
- Nolan, M.A.; Sakuta, R.; Chuang, N.; Otsubo, H.; Rutka, J.T.; Snead, O.C., III; Hawkins, C.E.; Weiss, S.K. Dysembryoplastic neuroepithelial tumors in childhood: Long-term outcome and prognostic features. Neurology 2004, 62, 2270–2276. [Google Scholar] [CrossRef]
- Dodgshun, A.J.; Maixner, W.J.; Hansford, J.R.; Sullivan, M.J. Low rates of recurrence and slow progression of pediatric pilocytic astrocytoma after gross-total resection: Justification for reducing surveillance imaging. J. Neurosurg. Pediatr. 2016, 17, 569–572. [Google Scholar] [CrossRef]
- Ryu, H.H.; Jung, T.Y.; Lee, G.J.; Lee, K.H.; Jung, S.H.; Jung, S.; Baek, H.J. Differences in the clinical courses of pediatric and adult pilocytic astrocytomas with progression: A single-institution study. Childs Nerv. Syst. 2015, 31, 2063–2069. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Gnekow, A.K. Recommendations of the Brain Tumor Subcommittee for the reporting of trials. SIOP Brain Tumor Subcommittee. International Society of Pediatric Oncology. Med. Pediatr. Oncol. 1995, 24, 104–108. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Fangusaro, J.; Witt, O.; Hernáiz Driever, P.; Bag, A.K.; de Blank, P.; Kadom, N.; Kilburn, L.; Lober, R.M.; Robison, N.J.; Fisher, M.J.; et al. Response assessment in paediatric low-grade glioma: Recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol. 2020, 21, e305–e316. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.T.; Conklin, H.M.; Huang, S.; Srivastava, D.; Sanford, R.; Ellison, D.W.; Merchant, T.E.; Hudson, M.M.; Hoehn, M.E.; Robison, L.L.; et al. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro-Oncology 2011, 13, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Youland, R.S.; Khwaja, S.S.; Schomas, D.A.; Keating, G.F.; Wetjen, N.M.; Laack, N.N. Prognostic factors and survival patterns in pediatric low-grade gliomas over 4 decades. J. Pediatr. Hematol. Oncol. 2013, 35, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Wisoff, J.H.; Sanford, R.A.; Heier, L.A.; Sposto, R.; Burger, P.C.; Yates, A.J.; Holmes, E.J.; Kun, L.E. Primary neurosurgery for pediatric low-grade gliomas: A prospective multi-institutional study from the Children’s Oncology Group. Neurosurgery 2011, 68, 1548–1554, discussion 1554–1545. [Google Scholar] [CrossRef]
- Fisher, P.G.; Tihan, T.; Goldthwaite, P.T.; Wharam, M.D.; Carson, B.S.; Weingart, J.D.; Repka, M.X.; Cohen, K.J.; Burger, P.C. Outcome analysis of childhood low-grade astrocytomas. Pediatr. Blood Cancer 2008, 51, 245–250. [Google Scholar] [CrossRef]
- Santos, A.N.; Dieckmann, C.; Rauschenbach, L.; Oppong, M.D.; Dinger, T.F.; Deuschl, C.; Tippelt, S.; Fleischhack, G.; Schmidt, B.; Pierscianek, D.; et al. Long-term outcome after management of pilocytic astrocytoma in the posterior fossa in a pediatric population. IBRO Neurosci. Rep. 2022, 13, 388–392. [Google Scholar] [CrossRef]
- Villanueva, K.G.; Rea, N.D.; Krieger, M.D. Novel Surgical and Radiologic Risk Factors for Progression or Recurrence of Pediatric Pilocytic Astrocytoma. Pediatr. Neurosurg. 2019, 54, 375–385. [Google Scholar] [CrossRef]
- Colin, C.; Padovani, L.; Chappé, C.; Mercurio, S.; Scavarda, D.; Loundou, A.; Frassineti, F.; André, N.; Bouvier, C.; Korshunov, A.; et al. Outcome analysis of childhood pilocytic astrocytomas: A retrospective study of 148 cases at a single institution. Neuropathol. Appl. Neurobiol. 2013, 39, 693–705. [Google Scholar] [CrossRef]
- Sutton, L.N.; Cnaan, A.; Klatt, L.; Zhao, H.; Zimmerman, R.; Needle, M.; Molloy, P.; Phillips, P. Postoperative surveillance imaging in children with cerebellar astrocytomas. J. Neurosurg. 1996, 84, 721–725. [Google Scholar] [CrossRef]
- Saunders, D.E.; Phipps, K.P.; Wade, A.M.; Hayward, R.D. Surveillance imaging strategies following surgery and/or radiotherapy for childhood cerebellar low-grade astrocytoma. J. Neurosurg. 2005, 102 (Suppl. S2), 172–178. [Google Scholar] [CrossRef]
- Smoots, D.W.; Geyer, J.R.; Lieberman, D.M.; Berger, M.S. Predicting disease progression in childhood cerebellar astrocytoma. Childs Nerv. Syst. 1998, 14, 636–648. [Google Scholar] [CrossRef] [PubMed]
- Thomale, U.W.; Gnekow, A.K.; Kandels, D.; Bison, B.; Hernáiz Driever, P.; Witt, O.; Pietsch, T.; Koch, A.; Capper, D.; Kortmann, R.D.; et al. Long-term follow-up of surgical intervention pattern in pediatric low-grade gliomas: Report from the German SIOP-LGG 2004 cohort. J. Neurosurg. Pediatr. 2022, 30, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Due-Tønnessen, B.J.; Lundar, T.; Egge, A.; Scheie, D. Neurosurgical treatment of low-grade cerebellar astrocytoma in children and adolescents: A single consecutive institutional series of 100 patients. J. Neurosurg. Pediatr. 2013, 11, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Bernhardtsen, T.; Laursen, H.; Bojsen-Møller, M.; Gjerris, F. Sub-classification of low-grade cerebellar astrocytoma: Is it clinically meaningful? Childs Nerv. Syst. 2003, 19, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Desai, K.I.; Nadkarni, T.D.; Muzumdar, D.P.; Goel, A. Prognostic factors for cerebellar astrocytomas in children: A study of 102 cases. Pediatr. Neurosurg. 2001, 35, 311–317. [Google Scholar] [CrossRef]
- Brossier, N.M.; Strahle, J.M.; Cler, S.J.; Wallendorf, M.; Gutmann, D.H. Children with supratentorial midline pilocytic astrocytomas exhibit multiple progressions and acquisition of neurologic deficits over time. Neurooncol. Adv. 2022, 4, vdab187. [Google Scholar] [CrossRef]
- Qaddoumi, I.; Sultan, I.; Gajjar, A. Outcome and prognostic features in pediatric gliomas: A review of 6212 cases from the Surveillance, Epidemiology, and End Results database. Cancer 2009, 115, 5761–5770. [Google Scholar] [CrossRef]
- Becker, A.P.; Scapulatempo-Neto, C.; Carloni, A.C.; Paulino, A.; Sheren, J.; Aisner, D.L.; Musselwhite, E.; Clara, C.; Machado, H.R.; Oliveira, R.S.; et al. KIAA1549: BRAF Gene Fusion and FGFR1 Hotspot Mutations Are Prognostic Factors in Pilocytic Astrocytomas. J. Neuropathol. Exp. Neurol. 2015, 74, 743–754. [Google Scholar] [CrossRef]
- Lassaletta, A.; Zapotocky, M.; Mistry, M.; Ramaswamy, V.; Honnorat, M.; Krishnatry, R.; Guerreiro Stucklin, A.; Zhukova, N.; Arnoldo, A.; Ryall, S.; et al. Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. J. Clin. Oncol. 2017, 35, 2934–2941. [Google Scholar] [CrossRef]
- Cacciotti, C.; Lenzen, A.; Self, C.; Pillay-Smiley, N. Recurrence Patterns and Surveillance Imaging in Pediatric Brain Tumor Survivors. J. Pediatr. Hematol. Oncol. 2024, 46, e227–e232. [Google Scholar] [CrossRef]
- Pagni, C.A.; Giordana, M.T.; Canavero, S. Benign recurrence of a pilocytic cerebellar astrocytoma 36 years after radical removal: Case report. Neurosurgery 1991, 28, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Boch, A.L.; Cacciola, F.; Mokhtari, K.; Kujas, M.; Philippon, J. Benign recurrence of a cerebellar pilocytic astrocytoma 45 years after gross total resection. Acta Neurochir. 2000, 142, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.P.; Main, C.; Bailey, S.; Pizer, B.; English, M.; Phillips, R.; Peet, A.; Avula, S.; Wilne, S.; Wheatley, K.; et al. The utility of routine surveillance screening with magnetic resonance imaging (MRI) to detect tumour recurrence in children with low-grade central nervous system (CNS) tumours: A systematic review. J. Neurooncol. 2018, 139, 507–522. [Google Scholar] [CrossRef] [PubMed]
Author Imaging Modality | Gross Total Resection (GTR) | Incomplete Resection | Time of First Postoperative MRI | Comments | ||
---|---|---|---|---|---|---|
Alford et al., 2016 [28] By MRI | GTR/no residual tumor | Subtotal resection | Within the first 48 h | Suspected post-surgical changes/indeterminate | ||
Benes et al., 2022 [22] By MRI | GTR/no residual tumor | Near-total resection: 95–99% resection Subtotal resection: 80–95% resection Partial resection: less than 80% resection | No later than 48 h | No comments | ||
Benesch et al., 2006 [26] By the neurosurgeon’s report and MRI | According to the recommendation of the Brain Tumors subcommittee for the reporting of trials, Gnekow et al., 1995 [39] | |||||
S1: Total resection, no recognizable residues | R1: No visible tumor on early postoperative CT or MRI without and with contrast enhancement | S2: Remaining tumor of less than 1.5 cc in size, possible localized invasion S3: Remaining tumor of more than 1.5 cc S4: biopsy | R2: Rim enhancement at the operation site only R3: Residual tumor of a measurable size R4: No significant change to preoperative tumor size | Immediate * | No comments | |
Campion et al., 2021 [25] By MRI | Complete | Incomplete | Usually performed within 48 h of surgery | No further definition | ||
Dodgshun et al., 2016 [36] By MRI | GTR as the absence of enhancing nodular elements | Immediate * | No comments | |||
Dorward et al., 2010 [29] By MRI | GTR as the lack of nodular enhancement on early (within 48 h of surgery) postoperative MRI | Within the first 48 h | No comments | |||
Gnekow et al., 2012 [5] By MRI | Complete | Partial resection | Not mentioned | No further definitions | ||
Gunny et al., 2005 [27] By MRI | The absence of a residual tumor on postoperative MRI regardless of the surgeon’s assessment of the extent of resection | The presence of a residual contrast-enhancing mass or nodule on the earliest postoperative imaging and which correlated with the tumor seen on the original scan. | 3–6 months postoperatively | Linear enhancement at resection margins, which may be seen immediately postoperatively and may persist for several years following surgery, was not considered to represent residual disease. | ||
Kim et al., 2014 [30] By MRI | GTR defined as a lack of nodular enhancement on imaging performed in the immediate postoperative period | Within 3 days post-surgery | Patients with a residual tumor on immediate postoperative MRI and who underwent a second craniotomy during the same admission were considered as having GTR if the second postoperative image demonstrated no residual tumor. | |||
McAuley et al., 2019 [23] By MRI | Complete | Partial | Intraoperative or immediate * postoperative MRI scans | No further definitions | ||
Nolan et al., 2004 [35] By MRI | GTR | Not mentioned | No further definitions | |||
Ogiwara et al., 2012 [32] By MRI and neurosurgeon | Group A: Total resection Group B: Total resection by operative observation with radiological residual tumor | Group C: Subtotal resection (Residual tumor < 1 cm3) | Within the first 48 h | No comments | ||
Ryall et al., 2020 [15] | GTR | No GTR | Not mentioned | No further definitions | ||
Ryu et al., 2015 [37] Primarily by neurosurgeon’s judgement | GTR: 100% tumor resection | Subtotal resection: ≥50% and <100% Partial resection: <50% | Within 3 months | Percentages of macroscopic resection | ||
Tibbetts et al., 2009 [33] By MRI | GTR: No residual enhancement | Biopsy: <70% resection Subtotal resection: >70% resection with residual solid tumor Near total resection: Linear residual enhancement | Not mentioned | No comments | ||
Udaka et al., 2013 [31] By MRI | GTR | Subtotal resection/biopsy | After surgery * | No further definitions | ||
Vassilyadi et al., 2009 [34] By MRI | Total | Subtotal | On the day following the operation | No further definitions | ||
Zaazoue et al., 2020 [24] By neurosurgeon and MRI | GTR: No evidence of a residual tumor according to the surgeon’s operative notes and the immediate postoperative MRI | Near total resection: no evidence of a residual tumor according to the surgeon’s operative notes and the immediate postoperative MRI Subtotal resection: visible residual tumor recorded following resection surgery Biopsy | Intraoperatively or within 48 h after surgery | No comments |
Year | Tumor Progression | Tumor Relapse | Comments | Author |
---|---|---|---|---|
2004 | Progression or relapse | No further definitions | Nolan [35] | |
2004 | An increase in tumor volume observed on serial scans | Spontaneous regression is defined as a reduction in tumor volume in the absence of further surgery or adjuvant radiotherapy | Gunny [27] | |
2006 | Progression and/or relapse is defined as a more than 25% increase in the tumor size radiographically or the emergence of new lesions or CSF positivity. | According to the recommendation of the Brain Tumors subcommittee for the reporting of trials, Gnekow et al., 1995 [39] | Benesch [26] | |
2009 | An increase in the size of the residual tumor after initial treatment | Evidence of a new tumor on neuroimaging when none had been identified on prior post-treatment scans | No comments | Tibbetts [33] |
2009 | Residual lesion enlargement in all three dimensions compared to the previous study | No comments | Vassilyadi [34] | |
2010 | Recurrence is defined as the development of progressive nodular enhancement on 2 successive follow-up images | No comments | Dorward [29] | |
2012 | Progression | Relapse | No further definitions | Gnekow [5] |
2012 | Recurrence is based on the evolution of radiological signs with the new appearance of or an increase in contrast enhancement | Definition copied from the article | Ogiwara [32] | |
2013 | Progression | Recurrence | No further definitions | Udaka [31] |
2014 | No further definitions | Kim [30] | ||
2015 | An increase in size over that of the original residual volume | Development of new lesions | Stable disease is defined as no change in tumor size | Ryu [37] |
2016 | Disease recurrence | No further definitions | Dodgshun [36] | |
2016 | Progression, regression, or stability | If the initial postoperative study demonstrated suspected postsurgical changes or was indeterminate, patients’ imaging records were followed until patients could be categorized as “tumor progression” or “no residual tumor” by the radiology report | Alford [28] | |
2019 | Progression or relapse | No further definitions | McAuley [23] | |
2019 | Progression | Recurrence | No further definitions | Zaazoue [24] |
2020 | Progression | No further definitions | Ryall [15] | |
2021 | Progression or recurrence is defined as a change in imaging features on surveillance imaging that leads to a change in clinical management | Included in the review as it adds change of clinical management as a factor regarding surveillance | Campion [25] |
Author | Years | Institute | No. Pts | Location | Histology $ | Years of Follow-Up Mean (Range) | No. of Recurrence (%) | Time to Recurrence |
---|---|---|---|---|---|---|---|---|
Alford [28] | 2000–2013 | Texas, USA | 41 | 41 cerebellar | 41 pilocytic astrocytoma | (0.3–6.4) | 6 (15) | range: 0.3–6.4 y (median 0.6 y) |
Benesch [26] | 1983–2003 | Austria | 18 | 18 cerebellar | 15 pilocytic astrocytoma 3 fibrillary astrocytoma | median 9.3 (2–20.5) | 2 (13), both pilocytic astrocytoma 1 patient died postoperatively | one patient: 10 y one patient: 20 m |
McAuley [23] | 2007–2017 | Liverpool, UK | 36 | 36 cerebellar | 36 pilocytic astrocytoma | 4 (0.8–10.5) | 1 (3) | 1 at 2.2 y |
Ogiwara [32] | 1983–1999 | Chicago, USA | 51 | 51 cerebellar | entire cohort: 55 pilocytic astrocytoma 43 low-grade astrocytoma nos 2 fibrillary astrocytoma 1 grade II astrocytoma nos | 18.4 (10.3–26.7) | 3 (6) | mean 60 m |
Ryu [37] | 1995–2013 | Republic of Korea | 11 | 11 cerebellar | 11 pilocytic astrocytoma | 8 (0.6–17.8) | 0 (0) | none |
Vassilyadi [34] | 1987–2007 | Ottawa, Canada | 19 | 19 cerebellar | 11 pilocytic astrocytoma 8 non-pilocytic astrocytoma | 7 (0.2–14.3) | 0 (0) | none |
Dorward #; [29] | n/a | St Louis, USA | 40 | 40 infratentorial | 40 pilocytic astrocytoma | 5.6 (2.1–19.8) | 11 (28) | range: 2–48.2 m (median 6.4 m, mean 16 m) 10 at scans 3–6 m 1 at 48.2 m |
Dodgshun [36] | 1996–2013 | Australia | 67 | 58 posterior fossa 9 supratentorial | 67 pilocytic astrocytoma | at least 5 in 33 patients | 3 (4) | range: 9–33 m |
Campion [25] | 2007–2013 | London, UK | 33 | 25 cerebellar 1 optic pathway 7 “other” (thalamic, midbrain, lobar) | entire cohort: 63 pilocytic astrocytoma 3 pleomorphic xanthoastrocytoma 1 angiocentric glioma | n/a | 1 cerebellar 3 “other” optic pathway not classified | 13 m unknown unknown |
Gnekow [5] | 1996–2004 | Germany | 343 | 96 cerebral hemisphere 29 midline supratentorial 188 cerebellum 15 brainstem 8 spinal cord 7 lateral ventricles | entire observation arm: 455 pilocytic astrocytoma 77 ganglioglioma/dysembryoplastic neuroepithelial tumor/other mixed glioneuronal tumors 33 diffuse astrocytoma 14 subependymal giant cell astrocytoma 12 pleomoprhic xanthoastrocytoma 7 oligodendroglioma 6 low grade glioma nos 4 oligoastrocytoma 60 unclear/no histology | entire cohort: median 9.3 (0–20.8) | 54 (15) | n/a |
Kim ^; [30] | 1993–2003 | Boston, USA | 67 | 41 cerebellar 16 temporal 4 parietal 2 frontal 2 brainstem 2 occipital | 46 pilocytic astrocytoma 14 ganglioglioma 6 dysembryoplastic neuroepithelial tumor 1 glioneuronal tumor | 6.6 (1–14.7) | 13 (19) | 4 in the first 6 m 3 in 6–12 m 5 in 3–5 y 1 in 10 y |
Ryall *; [15] | 1986–2017 | Toronto, Canada | 365 | 153 hemispheric 20 diencephalon 6 brainstem 179 cerebellum 7 spine | 140 pilocytic astrocytoma 106 low-grade glioma nos 41 ganglioglioma 22 dysembryoplastic epithelial tumor 20 diffuse astrocytoma 11 oligodendroglioma 10 glioneuronal tumor 5 angiocentric glioma 8 pleomorphic xanthoastrocytoma 2 sesmoplastic infantile ganglioglioma | 15 (0.1–32.8) | 41 (and 13 unknown outcomes) (11) | 0.1–18.2 y, median 3.1 y 5 patients >10 y |
Tibbetts #; [33] | 1990–2004 | St Louis, USA | 73 | entire cohort: 51 cerebellar 15 brain stem 2 spinal cord 25 supratentorial 12 optic pathway | 73 pilocytic astrocytoma | median entire cohort: 4.4 (0–17.8) | 12 (16) | |
Benes [22] | 2005–2020 | Czech Republic | 6 | 6 thalamus/thalamopeduncular | 5 pilocytic astrocytoma 1 grade 2 glioma (?) nos | 4.7 (1.9–8.5) | 0 (0) | none |
Nolan *; [35] | 1993–2002 | Toronto, Canada | 9 | total cohort: 10 temporal 8 frontal 6 parietal 2 occipital | 9 dysembryoplastic neuroepithelial tumor | entire cohort: 4.3 (1–11) | 0 (0) | none |
Udaka [31] | 1994–2010 | San Diego, USA | 38 | n/a | n/a | 2 m–11 y | 9 (24) | 0–60 m |
Zaazoue ^; [24] | 1990–2016 | Boston, USA | 240 | n/a | n/a | (2–25.1) | 84 (35) | median time to recurrence complete cohort: 12.7 m (range: 9 d–161.7 m) 63.7% of recurrences within the first 2 yr postoperatively, 90.8% by 5 yr, and 93.2% by 6 yr) |
Author | Years | Place | No. Patients | Location | Histology $ | Years of FU Mean (Range) | No. of Patients with Progression (%) | Time to Progression | Additional Therapy |
---|---|---|---|---|---|---|---|---|---|
Alford [28] | 2000–2013 | Texas, USA | 12 | 12 cerebellar | 12 pilocytic astrocytoma | (0.3–6.4) | 4 (33) | median 5 m | 3 immediate: 2 re-resection 1 focused radiation |
Benesch [26] | 1983–2003 | Austria | 9 | 9 cerebellar | 6 pilocytic astrocytoma 2 fibrillary astrocytoma 1 mixed hamartoma/pilocytic astrocytoma | (2–20.5) Median 9.3 y | 1 (11) | 3 y 1 died due to brain stem infiltration/compression | 3 immediate radiotherapy (one died) 1 re-resection 3 y after diagnosis |
Gunny [27] | 1988–1998 | London, UK | 11 | 11 cerebellar | 10 pilocytic astrocytoma 1 fibrillary astrocytoma | 6.8 (2–13.3) | 5 (45) | progression at 7, 9, 12, 13, and 20 months (4 PA, 1 FA) 5 regression (PA) | 1 re-resection 1 radiotherapy 3 re-resection + radiotherapy |
McAuley [23] | 2007–2017 | Liverpool, UK | 4 | 4 cerebellar | 4 pilocytic astrocytoma | 4 (0.8–10.5) | 4 (100) | 5.4 m, all < 12 m | re-resection |
Ogiwara [32] | 1983–1999 | Chicago, USA | 50 | 50 cerebellar | entire cohort: 55 pilocytic astrocytoma 43 low-grade astrocytoma noc 2 fibrillary astrocytoma 1 grade II astrocytoma noc | 18.4 (10.3–26.7) | 26 (52) | 30.7 m (0–132 m) | n/a |
Vassilyadi [34] | 1987–2007 | Ottowa, Canada | 9 | 9 cerebellar | 5 non-pilocytic astrocytoma 4 pilocytic astrocytoma | 4.4 (0.8–7.8) | 1 non- pilocytic astrocytoma (2) 1 pilocytic astrocytoma (25) | 5 m 3 m | stable disease but 2nd surgery: 4 2nd surgery after progression: 2 |
Campion [25] | 2007–2013 | London, UK | 29 | 15 cerebellar 4 optic pathway 10 “other” (thalamic, midbrain, lobar) | entire cohort: 63 pilocytic astrocytoma 3 pleomorphic xanthoastrocytomas 1 angiocentric glioma | 7 cerebellar (47) | mean 26 m (4–46 m) | ||
3 optic pathway (75) | unknown | ||||||||
6 other (60) | unknown | ||||||||
Gnekow [5] | 1996–2004 | Germany | 271 | 60 cerebral hemisphere 80 midline supratentorial 77 cerebellar 34 brainstem 14 spinal cord 6 lateral ventricles | entire observation arm: 455 pilocytic astrocytoma 77 ganglioglioma/dysembryoplastic neuroepithelial tumor/other mixed glioneuronal tumors 33 diffuse astrocytoma 14 subependymal giant cell astrocytoma 12 pleomoprhic xanthoastrocytoma 7 oligodendroglioma 6 low-grade glioma nos 4 oligoastrocytoma 60 unclear/no histology | entire cohort: median 9.3 y (0–20.8 y) | 292 (59) | n/a | 49 continued observation 76 resection 99 chemotherapy # 80 radiotherapy # # 12 of these were patients with complete resection but relapse |
Ryall *; [15] | 1986–2017 | Toronto, Canada | 538 | 85 hemispheric 281 diencepalon 77 brainstem 51 cerebellar 31 spine 13 disseminated | 163 pilocytic astrocytoma 154 LGG NOS 108 NF 38 ganglioglioma 30 diffuse astrocytoma 14 dysembryoplastic neuroepithelial tumor 11 glioneuronal tumor 10 oligodendroglioma 7 pleomorphic xanthoastrocytoma 2 angiocentric glioma1 desmoplastic infantile astrocytoma | 15.0 (0.2–32.6) | 243 (and 12 unknown) (45) | mean 5.5 y, median 4.3 y (0.1–18.9) | entire cohort: 348 chemotherapy 31 targeted inhibitor 176 radiation therapy NB: part upfront, part at progression |
Tibbetts [33] | 1990–2004 | St Louis, USA | 34 | entire cohort: 51 cerebellar 15 brain stem 2 spinal cord 25 supratentorial 12 optic pathway | 34 pilocytic astrocytoma | median entire cohort: 4.4 y (0–17.8) | 11 (32) | n/a | entire cohort (time point): 13 resection and chemotherapy 18 resection and radiation |
Benes [22] | 2005–2020 | Czech Republic | 15 | 15 thalamus/thalamopeduncular | 11 pilocytic astrocytoma 4 grade 2 nos | 6.5 (0.3–15.6) | 9 (60) | 9 (2.0 m–91.1 m) | 2 observation 2 surgery 2 chemotherapy 3 surgery + chemotherapy |
Nolan * [35] | 1993–2002 | Toronto, Canada | 15 | entire cohort: 10 temporal 8 frontal 6 parietal 2 occipital | 15 dysembryoplastic neuroepithelial tumor | entire cohort: 4.3 (1–11) | 3 (20) | 12–18 m in 2 5 y in 1 | 7 with second and 2 with third excision due to refractory seizures |
Ryu [37] | 1995–2013 | Republic of Korea | 8 | 3 OPG+ hypothalamus 2 hypothalamus 2 brainstem 1 temporal lobe | 8 pilocytic astrocytoma | 8 (0.6–17.8) | 3 (38) | 3.0, 4.6 (both OPG/HP), 5.2 y (brainstem) | immediate in 6: 3OPG/hypothalamic: 2 chemotherapy, 1 RT 2 hypothalamic: 1 gamma knife, 1 chemotherapy 1 brainstem: radiotherapy |
Udaka [31] | 1994–2010 | San Diego, USA | 64 | n/a | n/a | 2 m–11 y | 35 (55) | 0–>60 m | n/a |
Zaazoue [24] | 1990–2016 | Boston, USA | 24 | n/a | n/a | (2–25.1) | n/a | 3 patients with malignant transformation (1 after radiotherapy, 1 after chemotherapy, 1 after both); all died | n/a |
Months | 0 | 1 | 3 | 6 | 9 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 84 | 108 | 114 | 120 | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kim ^ [30] | GTR | ● | ● | ● | ● | 4 | ||||||||||||||||
Zaazoue ^ [24] | GTR | ● | ● | ● | ● | ● | ● | 6 | ||||||||||||||
All | ● | ● | ● | ● | ● | ● | ● | 7 | ||||||||||||||
Dodgshun [36] | GTR | ● | 3–6 | ● | ● | ● | ● | ● | 7 | |||||||||||||
All | ||||||||||||||||||||||
Gunny [27] | Cerebellar R+ | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | 11 | |||||||||
McAuley [23] | Cerebellar R0 and R+ | ● | ● | ● | ● | 4 | ||||||||||||||||
Vassilyadi [34] | Cerebellar R0 and R+ | ● | ● | ● | ● | ● | 5 | |||||||||||||||
Campion [25] | Cerebellar R+ | ● | ● | ● | ● | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roka, K.; Kersbergen, K.J.; Schouten-van Meeteren, A.Y.N.; Avula, S.; Sehested, A.; Otth, M.; Scheinemann, K. Towards a Risk-Based Follow-Up Surveillance Imaging Schedule for Children and Adolescents with Low-Grade Glioma. Curr. Oncol. 2024, 31, 7330-7351. https://doi.org/10.3390/curroncol31110541
Roka K, Kersbergen KJ, Schouten-van Meeteren AYN, Avula S, Sehested A, Otth M, Scheinemann K. Towards a Risk-Based Follow-Up Surveillance Imaging Schedule for Children and Adolescents with Low-Grade Glioma. Current Oncology. 2024; 31(11):7330-7351. https://doi.org/10.3390/curroncol31110541
Chicago/Turabian StyleRoka, Kleoniki, Karina J. Kersbergen, Antoinette Y. N. Schouten-van Meeteren, Shivaram Avula, Astrid Sehested, Maria Otth, and Katrin Scheinemann. 2024. "Towards a Risk-Based Follow-Up Surveillance Imaging Schedule for Children and Adolescents with Low-Grade Glioma" Current Oncology 31, no. 11: 7330-7351. https://doi.org/10.3390/curroncol31110541
APA StyleRoka, K., Kersbergen, K. J., Schouten-van Meeteren, A. Y. N., Avula, S., Sehested, A., Otth, M., & Scheinemann, K. (2024). Towards a Risk-Based Follow-Up Surveillance Imaging Schedule for Children and Adolescents with Low-Grade Glioma. Current Oncology, 31(11), 7330-7351. https://doi.org/10.3390/curroncol31110541