Strengthened Spin Hall Effect of Circularly Polarized Light Enabled by a Single-Layered Dielectric Metasurface
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spin Hall Effect under Circularly Polarized Incidence
2.2. Strategy and Challenges
2.3. Metasurface Design and Simulation
2.4. Spin Hall Effect of Light at the Metasurface
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SHEL | Spin Hall effect of light |
LCP | Left circularly polarized |
RCP | Right circularly polarized |
a-Si:H | Hydrogenated amorphous silicon |
References
- Imbert, C. Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam. Phys. Rev. D 1972, 5, 787–796. [Google Scholar] [CrossRef]
- Fedorov, F.I. To the theory of total reflection. J. Opt. 2013, 15, 014002. [Google Scholar] [CrossRef]
- Onoda, M.; Murakami, S.; Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 2004, 93, 083901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosten, O.; Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 2008, 319, 787–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bliokh, K.Y.; Aiello, A. Goos–Hänchen and Imbert–Fedorov beam shifts: An overview. J. Opt. 2013, 15, 014001. [Google Scholar] [CrossRef] [Green Version]
- Ling, X.; Zhou, X.; Huang, K.; Liu, Y.; Qiu, C.W.; Luo, H.; Wen, S. Recent advances in the spin Hall effect of light. Rep. Prog. Phys. 2017, 80, 066401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bliokh, K.Y.; Samlan, C.T.; Prajapati, C.; Puentes, G.; Viswanathan, N.K.; Nori, F. Spin-Hall effect and circular birefringence of a uniaxial crystal plate. Optica 2016, 3, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.J.; Nori, F.; Zayats, A.V. Spin–orbit interactions of light. Nat. Photonics 2015, 9, 796–808. [Google Scholar] [CrossRef] [Green Version]
- Aiello, A.; Woerdman, J.P. Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts. Opt. Lett. 2008, 33, 1437–1439. [Google Scholar] [CrossRef]
- Liu, S.; Chen, S.; Wen, S.; Luo, H. Photonic spin Hall effect: Fundamentals and emergent applications. Opto-Electron. Sci. 2022, 1, 220007. [Google Scholar] [CrossRef]
- Yu, X.; Wang, X.; Li, Z.; Zhao, L.; Zhou, F.; Qu, J.; Song, J. Spin Hall effect of light based on a surface plasmonic platform. Nanophotonics 2021, 10, 3031–3048. [Google Scholar] [CrossRef]
- Kim, M.; Yang, Y.; Lee, D.; Kim, Y.; Kim, H.; Rho, J. Spin Hall Effect of Light: From Fundamentals To Recent Advancements. Laser Photonics Rev. 2023, 17, 2200046. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, X.; Shu, W.; Wen, S.; Fan, D. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection. Phys. Rev. A 2011, 84, 043806. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Ling, X.; Zhou, X.; Shu, W.; Wen, S.; Fan, D. Enhancing or suppressing the spin Hall effect of light in layered nanostructures. Phys. Rev. A 2011, 84, 033801. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Ling, X. Enhanced Photonic Spin Hall Effect Due to Surface Plasmon Resonance. IEEE Photon. J. 2016, 8, 4801108. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Q.; Guo, J.; Zhang, J.; Chen, S.; Dai, X.; Xiang, Y. Resonant optical tunneling-induced enhancement of the photonic spin Hall effect. J. Phys. D Appl. Phys. 2018, 51, 145104. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Rho, J. Incident-Polarization-Independent Spin Hall Effect of Light Reaching Half Beam Waist. Laser Photonics Rev. 2022, 16, 2100510. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Ko, B.; Rho, J. Diffraction-induced enhancement of optical spin Hall effect in a dielectric grating. APL Photonics 2020, 5, 066106. [Google Scholar] [CrossRef]
- Takayama, O.; Sukham, J.; Malureanu, R.; Lavrinenko, A.V.; Puentes, G. Photonic spin Hall effect in hyperbolic metamaterials at visible wavelengths. Opt. Lett. 2018, 43, 4602–4605. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; She, W. Enhanced spin Hall effect of transmitted light through a thin epsilon-near-zero slab. Opt. Lett. 2015, 40, 2961–2964. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, Y.; Li, J.; Luo, L. Spin Hall Effect Enhancement of Transmitted Light Through an Anisotropic Metamaterial Slab. IEEE Photon. J. 2017, 9, 4600910. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Kim, T.H.; Yang, Y.; Park, H.J.; Rho, J. Observation of enhanced optical spin Hall effect in a vertical hyperbolic metamaterial. ACS Photonics 2019, 6, 2530–2536. [Google Scholar] [CrossRef]
- Tang, T.; Li, C.; Luo, L. Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide. Sci. Rep. 2016, 6, 30762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Lee, D.; Cho, H.; Min, B.; Rho, J. Spin Hall Effect of Light with Near-Unity Efficiency in the Microwave. Laser Photonics Rev. 2021, 15, 2000393. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Nguyen, T.H.Y.; Lee, H.J.; Byun, G.; Rho, J. Total Reflection-Induced Efficiency Enhancement of the Spin Hall Effect of Light. ACS Photonics 2021, 8, 2705–2712. [Google Scholar] [CrossRef]
- Yin, X.; Ye, Z.; Rho, J.; Wang, Y.; Zhang, X. Photonic Spin Hall Effect at Metasurfaces. Science 2013, 339, 1405–1407. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Lee, D.; Yang, Y.; Kim, Y.; Rho, J. Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces. Nat. Commun. 2022, 13, 2036. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Rho, J. Spin Hall Effect under Arbitrarily Polarized or Unpolarized Light. Laser Photonics Rev. 2021, 15, 2100138. [Google Scholar] [CrossRef]
- Cheng, J.; Xiang, Y.; Xu, J.; Liu, S.; Dong, P. Highly Sensitive Refractive Index Sensing Based on Photonic Spin Hall Effect and Its Application on Cancer Detection. IEEE Sens. J. 2022, 22, 12754–12760. [Google Scholar] [CrossRef]
- Zhou, X.; Sheng, L.; Ling, X. Photonic spin Hall effect enabled refractive index sensor using weak measurements. Sci. Rep. 2018, 8, 1221. [Google Scholar] [CrossRef]
- Zhou, X.; Ling, X.; Luo, H.; Wen, S. Identifying graphene layers via spin Hall effect of light. Appl. Phys. Lett. 2012, 101, 251602. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhou, J.; Zeng, K.; Chen, S.; Ling, X.; Shu, W.; Luo, H.; Wen, S. Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect. APL Photonics 2020, 5, 016105. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zeng, K.; Xu, W.; Chen, S.; Luo, H.; Wen, S. Ultrasensitive detection of ion concentration based on photonic spin Hall effect. Appl. Phys. Lett. 2019, 115, 251102. [Google Scholar] [CrossRef]
- Li, N.; Tang, T.; Li, J.; Luo, L.; Li, C.; Shen, J.; Yao, J. Highly sensitive biosensor with graphene-MoS2 heterostructure based on photonic spin Hall effect. J. Magn. Magn. Mater. 2019, 484, 445–450. [Google Scholar] [CrossRef]
- Wang, B.; Rong, K.; Maguid, E.; Kleiner, V.; Hasman, E. Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect. Nat. Nanotechnol. 2020, 15, 450–456. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, T.; Kim, M.; Jung, C.; Badloe, T.; Lee, D.; Lee, S.; Lee, H.J.; Rho, J. Dynamic optical spin Hall effect in chitosan-coated all-dielectric metamaterials for a biosensing platform. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 7300608. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Kim, Y.; Rho, J. Nanophotonic-assisted precision enhancement of weak measurement using spin Hall effect of light. Nanophotonics 2022, 11, 4591–4600. [Google Scholar] [CrossRef]
- Ling, X.; Xiao, W.; Chen, S.; Zhou, X.; Luo, H.; Zhou, L. Revisiting the anomalous spin-Hall effect of light near the Brewster angle. Phys. Rev. A 2021, 103, 033515. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Kim, Y.; Rho, J. Generalized analytic formula for spin Hall effect of shift enhancement and interface independence. Nanophotonics 2022, 11, 2803–2809. [Google Scholar] [CrossRef]
- Miao, C.; Wang, D.; Herrmann, E.; Zheng, Z.; Huang, H.; Gao, H. Limitations of the transmitted photonic spin Hall effect through layered structure. Sci. Rep. 2021, 11, 21083. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kim, H.; Park, J.; Lee, B. Fourier Modal Method and Its Applications in Computational Nanophotonics; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon-on-Thames, UK, 2012. [Google Scholar]
- Yang, Y.; Yoon, G.; Park, S.; Namgung, S.D.; Badloe, T.; Nam, K.T.; Rho, J. Revealing Structural Disorder in Hydrogenated Amorphous Silicon for a Low-Loss Photonic Platform at Visible Frequencies. Adv. Mater. 2021, 33, 2005893. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.H.; Magnusson, R. Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance? Optica 2018, 5, 289–294. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Lee, D. Strengthened Spin Hall Effect of Circularly Polarized Light Enabled by a Single-Layered Dielectric Metasurface. Materials 2023, 16, 283. https://doi.org/10.3390/ma16010283
Kim M, Lee D. Strengthened Spin Hall Effect of Circularly Polarized Light Enabled by a Single-Layered Dielectric Metasurface. Materials. 2023; 16(1):283. https://doi.org/10.3390/ma16010283
Chicago/Turabian StyleKim, Minkyung, and Dasol Lee. 2023. "Strengthened Spin Hall Effect of Circularly Polarized Light Enabled by a Single-Layered Dielectric Metasurface" Materials 16, no. 1: 283. https://doi.org/10.3390/ma16010283
APA StyleKim, M., & Lee, D. (2023). Strengthened Spin Hall Effect of Circularly Polarized Light Enabled by a Single-Layered Dielectric Metasurface. Materials, 16(1), 283. https://doi.org/10.3390/ma16010283