Identifying Establishment Year and Pre-Conversion Land Cover of Rubber Plantations on Hainan Island, China Using Landsat Data during 1987–2015
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Landsat Imagery and Processing
2.3. Ground Reference Data
2.3.1. Data for Rubber Plantations Map in 2015
2.3.2. Data for Establishment Year Map of Rubber Plantation
2.3.3. Data for Pre-Conversion Land Cover Map
2.4. Workflow and Algorithms
2.4.1. Mapping Workflow
2.4.2. Algorithm for Mapping Rubber Plantations in 2015
2.4.3. Algorithm for Identifying Establishment Year of Rubber Plantations
2.4.4. Algorithm for Tracking Pre-Conversion Land Cover of Rubber Plantations
2.5. Accuracy Assessment
2.6. Spatial and Areal Analysis of Plantation Establishment Year and Pre-Conversion Land Covers
3. Results
3.1. Rubber Plantation Map and Accuracy Assessment
3.2. Establishment Year Map of Rubber Plantations and Accuracy Assessment
3.3. Spatial-Temporal Distribution of Rubber Plantation Expansion on Hainan Island
3.4. Pre-Conversion Land Covers of Rubber Plantations on Hainan Island
4. Discussion
4.1. Data and Algorithm for Identifying the Establishment Year of Rubber Plantations
4.2. Uncertainties for Mapping Plantation Establishment Year and Pre-Conversion Land Covers
4.3. The Spatial-Temporal Dynamic of Rubber Plantations on Hainan Island
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Fox, J.M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl. Geogr. 2012, 32, 420–432. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 13 June 2018).
- Global Forest Resources Assessment (FRA) 2010 Main Report. Available online: http://www.fao.org/3/a-i1757e.pdf (accessed on 13 June 2018).
- Chen, H.; Yi, Z.F.; Schmidt-Vogt, D.; Ahrends, A.; Beckschafer, P.; Kleinn, C.; Ranjitkar, S.; Xu, J. Pushing the Limits: The Pattern and Dynamics of Rubber Monoculture Expansion in Xishuangbanna, SW China. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Ahrends, A.; Hollingsworth, P.M.; Ziegler, A.D.; Fox, J.M.; Chen, H.; Su, Y.; Xu, J. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Chang. 2015, 34, 48–58. [Google Scholar] [CrossRef]
- Blagodatsky, S.; Xu, J.; Cadisch, G. Carbon balance of rubber (Hevea brasiliensis) plantations: A review of uncertainties at plot, landscape and production level. Agric. Ecosyst. Environ. 2016, 221, 8–19. [Google Scholar] [CrossRef]
- Yang, X.; Blagodatsky, S.; Liu, F.; Becksch Fer, P.; Xu, J.; Cadisch, G. Rubber tree allometry, biomass partitioning and carbon stocks in mountainous landscapes of sub-tropical China. For. Ecol. Manag. 2017, 404, 84–99. [Google Scholar] [CrossRef]
- Fox, J.; Castella, J.; Ziegler, A.D. Swidden, rubber and carbon: Can REDD+ work for people and the environment in Montane Mainland Southeast Asia? Glob. Environ. Chang. 2014, 29, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Fujiki, S.; Okada, K.; Nishio, S.; Kitayama, K. Estimation of the stand ages of tropical secondary forests after shifting cultivation based on the combination of WorldView-2 and time-series Landsat images. ISPRS J. Photogramm. Remote Sens. 2016, 119, 280–293. [Google Scholar] [CrossRef]
- Beckschäfer, P. Obtaining rubber plantation age information from very dense Landsat TM&ETM+ time series data and pixel-based image compositing. Remote Sens. Environ. 2017, 196, 89–100. [Google Scholar]
- Chen, B.; Cao, J.; Wang, J.; Wu, Z.; Tao, Z.; Chen, J.; Yang, C.; Xie, G. Estimation of rubber stand age in typhoon and chilling injury afflicted area with Landsat TM data: A case study in Hainan Island, China. For. Ecol. Manag. 2012, 274, 222–230. [Google Scholar] [CrossRef]
- Dibs, H.; Idrees, M.O.; Alsalhin, G.B.A. Hierarchical classification approach for mapping rubber tree growth using per-pixel and object-oriented classifiers with SPOT-5 imagery. Egypt. J. Remote Sens. Space Sci. 2017, 20, 21–30. [Google Scholar] [CrossRef]
- Li, Z.; Fox, J.M. Rubber Tree Distribution Mapping in Northeast Thailand. Int. J. Geosci. 2011, 2, 573–584. [Google Scholar] [CrossRef]
- Razak, J.; Shariff, A.; Ahmad, N.B.; Sameen, M.I. Mapping rubber trees based on phenological analysis of Landsat time series data-sets. Geoacarto Int. 2018, 33. [Google Scholar] [CrossRef]
- Suratman, M.N.; Bull, G.Q.; Leckie, D.G.; Lemay, V.M.; Marshall, P.L.; Mispan, M.R. Prediction models for estimating the area, volume, and age of rubber (Hevea brasiliensis) plantations in Malaysia using Landsat TM data. Int. For. Rev. 2004, 6, 1–12. [Google Scholar] [CrossRef]
- Liu, X.; Feng, Z.; Jiang, L.; Zhang, J. Rubber plantation in Xishuangbanna: Remote sensing identification and digital mapping. Resour. Sci. 2012, 34, 1769–1780. [Google Scholar]
- Koedsin, W.; Huete, A. Mapping Rubber Tree Stand Age Using Pléiades Satellite Imagery: A Case Study in Thalang District, Phuket, Thailand. Eng. J. 2015, 19, 45–56. [Google Scholar] [CrossRef]
- Charoenjit, K.; Zuddas, P.; Allemand, P.; Pattanakiat, S.; Pachana, K. Estimation of biomass and carbon stock in Para rubber plantations using object-based classification from Thaichote satellite data in Eastern Thailand. J. Appl. Remote Sens. 2015, 9. [Google Scholar] [CrossRef]
- Trisasongko, B.H. Mapping stand age of rubber plantation using ALOS-2 polarimetric SAR data. Eur. J. Remote Sens. 2017, 50, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Kou, W.; Xiao, X.; Dong, J.; Gan, S.; Zhai, D.; Zhang, G.; Qin, Y.; Li, L. Mapping Deciduous Rubber Plantation Areas and Stand Ages with PALSAR and Landsat Images. Remote Sens. 2015, 7, 1048–1073. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Xie, G.; Wang, J.; Wu, Z.; Cao, J. Estimation of rubber stand age using statistical and artificial neutral network approaches with Landsat TM data. Chin. J. Trop. Crops 2012, 33, 182–188. [Google Scholar]
- Qi, D.; Zhou, J.; Xie, G.; Wu, Z. Optimizing Tapping-Tree Density of Rubber (Hevea brasiliensis) Plantations in South China. Small-Scale For. 2016, 15, 61–72. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Xiao, X.; Zhao, B.; Dong, J.; Kou, W.; Qin, Y.; Yang, C.; Wu, Z.; Sun, R.; et al. Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 117–130. [Google Scholar] [CrossRef]
- Chen, B.; Wu, Z.; Yang, C.; Qi, D.; Li, X.; Lan, G. Monthly dynamic of leaf area index of rubber plantation in Danzhou, Hainan Island, China. Chin. J. Trop. Agric. 2015, 35, 1–6. [Google Scholar]
- Hainan Statistical Yearbook. 2015. Available online: http://tongji.cnki.net/kns55/Navi/YearBook.aspx?id=N2016010173&floor=1 (accessed on 23 April 2016).
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Rogan, J.; Kellndorfer, J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 2012, 117, 72–82. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Liu, M. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 2002, 82, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Biradar, C.M.; Czarnecki, C.; Alabi, T.; Keller, M. A Simple Algorithm for Large-Scale Mapping of Evergreen Forests in Tropical America, Africa and Asia. Remote Sens. 2009, 1, 355–374. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Xiao, X.; Ye, H.; Ma, J.; Russell, D.; Li, X.; Zhao, B.; Wu, Z.; Sun, R.; Dong, J.; et al. Mapping forest and their spatial-temporal changes from 2007 to 2015 in tropical Hainan Island by integrating ALOS/ALOS-2 L-band SAR and Landsat optical images. IEEE J. Sel. Trop. Appl. Earth Obs. Remote Sens. 2018, 11, 852–867. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradara, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Xie, G. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2012, 74, 20–33. [Google Scholar] [CrossRef]
- Global 25m Resolution PALSAR-2/PALSAR Mosaic and Forest/Non-Forest Map (FNF) Dataset Description. 2017. Available online: http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/DatasetDescription_PALSAR2_Mosaic_FNF_revH.pdf (accessed on 15 May 2018).
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.B.; Olofsson, P.; Woodcock, C.E. Land use change in New England: a reversal of the forest transition. J. Land Use Sci. 2012, 9, 105–130. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiche, J.; Verbesselt, J.; Hoekman, D.; Herold, M. Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sens. Environ. 2015, 156, 276–293. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Kou, W.; Jin, C.; Wang, J.; Li, X. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 2015, 170, 121–132. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.; Valentini, R. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 7–16. [Google Scholar] [CrossRef]
- Watmough, G.R.; Atkinson, P.M.; Hutton, C.W. A combined spectral and object-based approach to transparent cloud removal in an operational setting for Landsat ETM+. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 220–227. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, M.; Mai, Q.; Jiang, J. Damage of Typhoon Damrey to the Rubber Industry in Hainan State Farm Bureau and Its Countermeasures for Future Development. Chin. J. Trop. Agric. 2006, 26, 41–43. [Google Scholar]
- Kan, L.; Xie, G.; Tao, Z.; Yang, L.; Cui, Z. Analysis on rubber tree cold injury in 2007/2008 winter in Hainan. Chin. Agric. Sci. Bull. 2009, 10, 251–257. [Google Scholar]
- Hainan State Farm (HSF). Technique Manual of Rubber Cultivation for Hainan State Farm; Hainan State Farm (HSF): Haikou, China, 2007. [Google Scholar]
- Hainan Statistical Yearbook. 2010. Available online: http://tongji.cnki.net/kns55/Navi/YearBook.aspx?id=N2010110036&floor=1 (accessed on 5 May 2018).
- Mo, Y. Production and marketing of nature rubber in 2009 and market forecast in 2010. Chin. Trop. Agric. 2010, 33, 12–15. [Google Scholar]
- Liu, S.; Zhang, J.; Cai, D.; Tian, G.; Zhang, G.; Zou, H. Spatial-temporal characteristics of rubber typhoon disaster in Hainan Island. Guangdong Agric. Sci. 2015, 42, 132–135. [Google Scholar]
- Huang, J. Study on sustainable management of tropical forest in Hainan Island. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2006. [Google Scholar]
- Li, F.; Chen, H. Analysis on Socia-economic impact of forest eco-compensation mechanism in Hainan Province. Chin. Popul. Resour. Environ. 2007, 6, 113–118. [Google Scholar]
Approach | Algorithm | Optical | SAR | Optical+SAR | ||
---|---|---|---|---|---|---|
VHR/HR | MR | CR | ||||
Statistical Models | Regression | Charoenjit and Zuddas (2015) | Chen and Cao (2012); Suratman and Bull (2004); Chen et al. (2012) | |||
Others * | Razak and Shariff (2017); Chen et al. (2012) | |||||
Image Classification | Supervised | Koedsin and Huete (2015) | Li and Fox (2011) | Li and Fox (2012) | Trisasongko (2017) | |
Objected | Chen and Yi (2016) | LIU et al. (2012) | ||||
Hybrid | Dibs and Idrees (2017) | |||||
LULCC Detection | Decision Tree | Beckschäfer (2017) | Kou and Xiao (2015) |
Sensor | Method | Nimages/NPathRow | Age Resolution | Accuracy | Location | References |
---|---|---|---|---|---|---|
PALSAR-2 | Image classification | 1/1 | 3–8, >8 | OA = 44–67% | West Java, Indonesia | Trisasongko (2017) |
SPOT-5 | Image classification | 1/1 | ≤7, 7–25, >25 | OA = 81–97% | Selangor, Malaysia | Dibs and Idrees (2017) |
RapidEye | Image classificaiton | 48/48 | ≤6, >6 | - | Xishuangbanna, China | Chen and Yi (2016) |
TM | Statistical model | 1/1 | - | RMSE = 3.7–5.3 years | Hainan, China | Chen et al. (2012) |
TM | Statistical model | 1/1 | - | RMSE = 5.96 years | Hainan, China | Chen and Cao (2012) |
TM | Statistical model | 1/1 | - | RMSE = 6.4–8.2 years | Selangor, Malaysia | Suratman and Bull (2004) |
Pléiades | Image classification | 1/1 | ≤7, 7–15, >15 | OA = 94–97% | Phuket, Thailand | Koedsin and Huete (2015) |
Thaichote | Statistical model | 1/1 | ≤12, 12–18, >18 | - | Rayong, Thailand | Charoenjit and Zuddas (2015) |
TM | Image classification | 11/11 | ≤2, 2–4, >4 | - | Phuket, Thailand | Li and Fox (2011) |
TM/ETM+, MODIS | Image classification | 6/3(46) # | ≤10, >10 | OA = 85.2% | Xishuangbanna, China | LIU et al. (2012) |
TM/ETM+ | Image classification | 29/1 | ≤6, >6 | OA = 79% | Selangor, Malaysia | Razak and Shariff (2017) |
MODIS | Image classification | 29/4 | ≤4, >4 | OA = 97–98% | Southeast Asia | Li and Fox (2012) |
TM/ETM+, PALSAR | LULCC detection | 226/1(1) # | ≤5, 5–10, >10 | OA = 85% | Xishuangbanna, China | Kou and Xiao (2015) |
TM/ETM+ | LULCC detection | 276/1 | Annual | RMSE = 2.5 years | Xishuangbanna, China | Beckschäfer (2017) |
TM/ETM+/OLI | LULCC-and biophysical-based | 1981/4 | Annual | R2 = 0.85/0.99, RMSE = 2.34/0.54 years | Hainan Island, China | This study |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Xiao, X.; Wu, Z.; Yun, T.; Kou, W.; Ye, H.; Lin, Q.; Doughty, R.; Dong, J.; Ma, J.; et al. Identifying Establishment Year and Pre-Conversion Land Cover of Rubber Plantations on Hainan Island, China Using Landsat Data during 1987–2015. Remote Sens. 2018, 10, 1240. https://doi.org/10.3390/rs10081240
Chen B, Xiao X, Wu Z, Yun T, Kou W, Ye H, Lin Q, Doughty R, Dong J, Ma J, et al. Identifying Establishment Year and Pre-Conversion Land Cover of Rubber Plantations on Hainan Island, China Using Landsat Data during 1987–2015. Remote Sensing. 2018; 10(8):1240. https://doi.org/10.3390/rs10081240
Chicago/Turabian StyleChen, Bangqian, Xiangming Xiao, Zhixiang Wu, Tin Yun, Weili Kou, Huichun Ye, Qinghuo Lin, Russell Doughty, Jinwei Dong, Jun Ma, and et al. 2018. "Identifying Establishment Year and Pre-Conversion Land Cover of Rubber Plantations on Hainan Island, China Using Landsat Data during 1987–2015" Remote Sensing 10, no. 8: 1240. https://doi.org/10.3390/rs10081240
APA StyleChen, B., Xiao, X., Wu, Z., Yun, T., Kou, W., Ye, H., Lin, Q., Doughty, R., Dong, J., Ma, J., Luo, W., Xie, G., & Cao, J. (2018). Identifying Establishment Year and Pre-Conversion Land Cover of Rubber Plantations on Hainan Island, China Using Landsat Data during 1987–2015. Remote Sensing, 10(8), 1240. https://doi.org/10.3390/rs10081240