Assessing the Influence of Tourism-Driven Activities on Environmental Variables on Hainan Island, China
Abstract
:1. Introduction
2. Study Area and Data Source
2.1. Study Area
2.2. Data Source
3. Methodology
3.1. Data Pre-Processing
3.1.1. Retrieval of NDVI and LST Images from GEE
3.1.2. Classification of POIs into Tourism-Related and Non-Tourism-Related Sites
3.2. LST Variations
3.3. LST Annual Anomalies and Trends
3.4. NDVI Variations
3.5. LULC Matrix Dynamics
3.6. Accuracy Assessment
4. Results
4.1. Hainan Island Population Changes
4.2. LST Variations
4.2.1. Function-Defined POIs Categories
4.2.2. LST Variations between Tourism-Related and Non-Tourism-Related Categories
4.2.3. LST Variations within the Four Sub-Classes of Tourism-Related Sites
4.3. Annual LST Anomalies
4.4. NDVI Variations between Tourism-Related and Non-Tourism-Related Sites
4.5. LULC and LST Changes
4.6. Ecological Effects of Tourism-Related Activities
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Conesa, H.M.; Jiménez-Cárceles, F.J. The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. Mar. Pollut. Bull. 2007, 54, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Frenot, Y.; Gloaguen, J.; Masse, L.; Lebouvier, M. Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biol. Conserv. 2001, 101, 33–50. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Gugushvili, T.; Salukvadze, G.; Salukvadze, J. Fragmented development: Tourism-driven economic changes in Kazbegi, Georgia. Ann. Agrar. Sci. 2017, 15, 49–54. [Google Scholar] [CrossRef]
- Qian, J.; Feng, D.; Zhu, H. Tourism-driven urbanization in China’s small town development: A case study of Zhapo Town, 1986–2003. Habitat Int. 2012, 36, 152–160. [Google Scholar] [CrossRef]
- Telfer, D.J. Food purchases in a five-star hotel: A case study of the Aquila Prambanan Hotel, Yogyakarta, Indonesia. Tour. Econ. 1996, 2, 321–338. [Google Scholar] [CrossRef]
- Binns, T.; Nel, E. Tourism as a local development strategy in South Africa. Geogr. J. 2002, 168, 235–247. [Google Scholar] [CrossRef]
- Wu, T.-P.; Wu, H.-C.; Liu, S.-B.; Hsueh, S.-J. The relationship between international tourism activities and economic growth: Evidence from China’s Economy. Tour. Plan. Dev. 2018, 15, 365–381. [Google Scholar] [CrossRef]
- Kuo, N.-W.; Chen, P.-H. Quantifying energy use, carbon dioxide emission, and other environmental loads from island tourism based on a life cycle assessment approach. J. Clean. Prod. 2009, 17, 1324–1330. [Google Scholar] [CrossRef]
- Day, J.; Cai, L. Environmental and energy-related challenges to sustainable tourism in the United States and China. Int. J. Sustain. Dev. World Ecol. 2012, 19, 379–388. [Google Scholar] [CrossRef]
- Holden, A. Environment and Tourism, 3rd ed.; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Duffy, R. A Trip Too Far: Ecotourism, Politics and Exploitation, 1st ed.; Earthscan: London, UK; New York, NY, USA, 2002. [Google Scholar]
- Tang, Z. An integrated approach to evaluating the coupling coordination between tourism and the environment. Tour. Manag. 2015, 46, 11–19. [Google Scholar] [CrossRef]
- Gössling, S. Global environmental consequences of tourism. Glob. Environ. Chang. 2002, 12, 283–302. [Google Scholar] [CrossRef]
- Makame, M.K.; Boon, E.K. Sustainable Tourism and Benefit-Sharing in Zanzibar: The Case of Kiwengwa-Pongwe Forest Reserve. J. Hum. Ecol. 2008, 24, 93–109. [Google Scholar] [CrossRef]
- Svoronou, E.; Holden, A. Ecotourism as a Tool for Nature Conservation: The Role of WWF Greece in the Dadia-Lefkimi-Soufli Forest Reserve in Greece. J. Sustain. Tour. 2005, 13, 456–467. [Google Scholar] [CrossRef]
- Hawkins, J.P.; Roberts, C.; Kooistra, D.; Buchan, K.; White, S. Sustainability of scuba diving tourism on coral reefs of Saba. Coast. Manag. 2005, 33, 373–387. [Google Scholar] [CrossRef]
- Petrosillo, I.; Zurlini, G.; Corlianò, M.; Zaccarelli, N.; Dadamo, M. Tourist perception of recreational environment and management in a marine protected area. Landsc. Urban Plan. 2007, 79, 29–37. [Google Scholar] [CrossRef]
- Spalding, M.; Burke, L.; Wood, S.A.; Ashpole, J.; Hutchison, J.; Zu Ermgassen, P.S.E. Mapping the global value and distribution of coral reef tourism. Mar. Policy 2017, 82, 104–113. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y. Tourism-led land-use changes and their environmental effects in the southern coastal region of Hainan Island, China. J. Coast. Res. 2013, 29, 1118–1125. [Google Scholar] [CrossRef]
- Wang, L.; Fang, B.; Law, R. Effect of air quality in the place of origin on outbound tourism demand: Disposable income as a moderator. Tour. Manag. 2018, 68, 152–161. [Google Scholar] [CrossRef]
- Ruiz-Guerra, I.; Molina-Moreno, V.; Cortés-García, F.J.; Núñez-Cacho, P. Prediction of the impact on air quality of the cities receiving cruise tourism: The case of the Port of Barcelona. Heliyon 2019, 5, e01280. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.M.; Tol, R.S.J. The impact of climate change on tourism in Germany, the UK and Ireland: A simulation study. Reg. Environ. Chang. 2007, 7, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Kaján, E.; Saarinen, J. Tourism, climate change and adaptation: A review. Curr. Issues Tour. 2013, 16, 167–195. [Google Scholar] [CrossRef]
- Ateljevic, I. Transforming the (tourism) world for good and (re)generating the potential ‘new normal’. Tour. Geogr. 2020, 22, 467–475. [Google Scholar] [CrossRef]
- Cheer, J.M. Human flourishing, tourism transformation and COVID-19: A conceptual touchstone. Tour. Geogr. 2020, 22, 514–524. [Google Scholar] [CrossRef]
- Mandal, I.; Pal, S. COVID-19 pandemic persuaded lockdown effects on environment over stone quarrying and crushing areas. Sci. Total Environ. 2020, 732, 139281. [Google Scholar] [CrossRef] [PubMed]
- Paital, B. Nurture to nature via COVID-19, a self-regenerating environmental strategy of environment in global context. Sci. Total Environ. 2020, 729, 139088. [Google Scholar] [CrossRef]
- Li, G.; Yang, X.; Liu, Q.; Zheng, F. Destination island effects: A theoretical framework for the environmental impact assessment of human tourism activities. Tour. Manag. Perspect. 2014, 10, 11–18. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manag. 2007, 85, 245–257. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Sun, G.; Liu, Y. The footprint of urban heat island effect in China. Sci. Rep. 2015, 5, 11160. [Google Scholar] [CrossRef] [PubMed]
- Jenerette, G.D.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 2007, 22, 353–365. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, W.; Cadenasso, M. Cadenasso, Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [Google Scholar] [CrossRef]
- Chu, L.; Oloo, F.; Bergstedt, H.; Blaschke, T. Assessing the link between human modification and changes in land surface temperature in Hainan, China using image archives from google earth engine. Remote Sens. 2020, 12, 888. [Google Scholar] [CrossRef] [Green Version]
- Ravanelli, R.; Nascetti, A.; Cirigliano, R.V.; Di Rico, C.; Leuzzi, G.; Monti, P.; Crespi, M. Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems. Remote Sens. 2018, 10, 1488. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.H.; Xu, S.J.; Xie, G.Z.; Tang, B.; Bi, H.; Yu, L. Analysis of the ecological vulnerability of the western Hainan Island based on its landscape pattern and ecosystem sensitivity. Acta Ecol. Sin. 2007, 27, 1257–1264. [Google Scholar] [CrossRef]
- Herbeck, L.S.; Unger, D.; Krumme, U.; Liu, S.; Jennerjahn, T.C. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuar. Coast. Shelf Sci. 2011, 93, 375–388. [Google Scholar] [CrossRef]
- Jones, P.D.; Lister, D.H.; Li, Q. Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res. Atmos. 2008, 113, D16. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L. Modulation of the urban heat island by the tourism during the Chinese New Year holiday: A case study in Sanya City, Hainan Province of China. Sci. Bull. 2015, 60, 1543–1546. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Jiang, S.; Alves, A.; Rodrigues, F.; Joseph, F., Jr.; Pereira, F.C. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 2015, 53, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; Mai, K. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. Int. J. Geogr. Inf. Sci. 2017, 31, 825–848. [Google Scholar] [CrossRef]
- Hainan Provincial Bureau of Statistics & Survey Office of the National Bureau of Statistics in Hainan. Hainan Statistics Yearbook; China Statistics Press: Beijing, China, 2018. Available online: http://www.stats.gov.cn/tjsj/ndsj/2018/indexeh.htm (accessed on 5 May 2020).
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006; NASA EOSDIS Land Processes DAAC: Washington, WA, USA, 2015. [CrossRef]
- Didan, K. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN Grid V006; NASA EOSDIS Land Processes DAAC: Washington, WA, USA, 2015. [CrossRef]
- Qiu, Y.-W.; Yu, K.-F.; Zhang, G.; Wang, W.-X. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. J. Hazard. Mater. 2011, 190, 631–638. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, W. Current status, crisis and conservation of coral reef ecosystems in China. Proc. Int. Acad. Ecol. Environ. Sci. 2012, 2, 1–11. [Google Scholar]
- Los, S.O.; Collatz, G.J.; Bounoua, L.; Sellers, P.J.; Tucker, C.J. Global Interannual Variations in Sea Surface Temperature and Land Surface Vegetation, Air Temperature, and Precipitation. J. Clim. 2001, 14, 1535–1549. [Google Scholar] [CrossRef]
- Li, M.-F.; Li, Y.-P.; Guo, P.-T. Recent variations in daily extremes of temperature and precipitation in Hainan Island of South China. ARPN J. Eng. Appl. Sci. 2015, 10, 6583–6592. [Google Scholar]
- Zhang, Q.; Shi, Q.; Chen, G.; Fong, T.C.W.; Wong, D.C.C.; Huang, H.; Wang, H.; Zhao, M. Status monitoring and health assessment of Luhuitou fringing reef of Sanya, Hainan, China. Chin. Sci. Bull. 2006, 51, 81–88. [Google Scholar] [CrossRef]
- Roder, C.; Wu, Z.; Richter, C.; Zhang, J. Coral reef degradation and metabolic performance of the scleractinian coral Porites lutea under anthropogenic impact along the NE coast of Hainan Island, South China Sea. Cont. Shelf Res. 2013, 57, 123–131. [Google Scholar] [CrossRef]
- Schlacher, T.A.; De Jager, R.; Nielsen, T. Vegetation and ghost crabs in coastal dunes as indicators of putative stressors from tourism. Ecol. Indic. 2011, 11, 284–294. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, J.; Shangguang, T. Relationship between tourism development and vegetation environment in Luya Mountain Nature Reserve: Tourism influencing index and some indices analysis. Acta Ecol. Sin. 2003, 23, 703–711. [Google Scholar]
- Zhang, J.-T.; Xiang, C.; Li, M. Effects of tourism and topography on vegetation diversity in the subalpine meadows of the Dongling Mountains of Beijing, China. Environ. Manag. 2012, 49, 403–411. [Google Scholar] [CrossRef]
- Frey, C.; Parlow, E.; Vogt, R.; Harhash, M.; Wahab, M.A. Flux measurements in Cairo. Part 1: In situ measurements and their applicability for comparison with satellite data. Int. J. Climatol. 2011, 31, 218–231. [Google Scholar] [CrossRef]
- Frey, C.; Parlow, E.; Vogt, R.; Harhash, M.; Wahab, M.A. Validation of satellite observed thermal emission with in-situ measurements over an urban surface. Remote Sens. Environ. 2006, 104, 201–210. [Google Scholar]
- Parlow, E.; Vogt, R.; Feigenwinter, C. The urban heat island of Basel–seen from different perspectives. DIE ERDE J. Geogr. Soc. Berlin 2014, 145, 96–110. [Google Scholar]
- Chrysoulakis, N.; Grimmond, C.S.B.; Feigenwinter, C.; Lindberg, F.; Gastellu-Etchegorry, J.-P.; Marconcini, M.; Mitraka, Z.; Stagakis, S.; Crawford, B.; Olofson, F.; et al. Urban energy exchanges monitoring from space. Sci. Rep. 2018, 8, 11498. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, N.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Z.; Zhuang, D. A study on the spatial-temporal dynamic changes of land-use and driving forces analyses of China in the 1990s. Geogr. Res. 2003, 22, 1–12. [Google Scholar]
Theme | Data Type/Images Numbers | Resolution/Scale | Time | Source |
---|---|---|---|---|
MOD11A2.006 Terra Land Surface Temperature and Emissivity 8-Day Global 1 km | Satellite imagery/913 imageries | 1000 m | 2000–2019 | U.S. Geological Survey (USGS) and hosted in GEE archive |
MOD13A2.006 Terra Vegetation Indices 16-Day Global 1 Km | Satellite imagery/457 imageries | 1000 m | 2000–2019 | U.S. Geological Survey (USGS) and hosted in GEE archive |
Land use/land cover data in China | Satellite Imagery | 1000 m | 2000 and 2018 | Resource and Environment Data Cloud Platform of the Chinese Academy of Sciences |
National boundary Towns and Cities | Vector/Polygon /Point | 1:1,000,000 | 2015 | Resource and Environment Data Cloud Platform of the Chinese Academy of Sciences |
POIs | Vector/Point | 2019 | Amap Open Platform | |
Population statistics in Hainan | Numbers | 2000–2018 | Annual Hainan Statistics Yearbook from the National Bureau of Statistics in Hainan (2000 to 2018) |
Class | Sub-Classes | The Function/Descriptions of Sub-Classes |
---|---|---|
Tourism-related sites | Residential sites along shorelines | Residential real estate along the shoreline hosting new immigration & tourists which located within 10 km buffer of shoreline |
Accommodation service sites | Tourism-related accommodation services, including hotels and other accommodation facilities | |
Other tourism-related sites | Recreation, shopping, dining, transportation and other commercial sites. | |
Orchard sites | Transformed from forest and cultivated land into orchard | |
Non-tourism-related sites | Unchanged land-use type, original residential sites, transportation, leisure places, etc. |
Land Cover Classes in The Follow-Up Year (2018) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Land Cover | Cropland | Dense forest | Shrubland | Sparse Forest | Orchard | Grassland | Water | Urban | Bareland | Wetland | Area (Km2) | |
Baseline land cover (2000) | Cropland | 4728 | 1254 | 581 | 246 | 1057 | 184 | 318 | 526 | 16 | 8 | 8918 |
Dense Forest | 1283 | 10,037 | 291 | 202 | 629 | 428 | 246 | 185 | 5 | 0 | 13,306 | |
Shrubland | 553 | 337 | 1139 | 49 | 179 | 76 | 66 | 86 | 5 | 1 | 2491 | |
Sparse forest | 246 | 175 | 59 | 287 | 118 | 36 | 33 | 28 | 2 | 0 | 984 | |
Orchard | 1041 | 451 | 212 | 76 | 2831 | 72 | 142 | 138 | 8 | 0 | 4971 | |
Grassland | 174 | 440 | 74 | 39 | 76 | 327 | 47 | 36 | 2 | 2 | 1217 | |
Water | 253 | 197 | 39 | 19 | 110 | 30 | 485 | 70 | 7 | 2 | 1212 | |
Urban | 281 | 82 | 21 | 13 | 66 | 13 | 66 | 207 | 1 | 0 | 750 | |
Bareland | 42 | 4 | 7 | 6 | 5 | 10 | 17 | 10 | 24 | 0 | 125 | |
Wetland | 4 | 1 | 0 | 0 | 0 | 0 | 1 | 6 | 0 | 3 | 15 | |
Area (km2) | 8605 | 12,978 | 2423 | 937 | 5071 | 1176 | 1421 | 1292 | 70 | 16 | 33,989 | |
Change | −313 | −328 | −68 | −47 | 100 * | −41 | 209 * | 542 * | −55 | 1 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, L.; Oloo, F.; Chen, B.; Xie, M.; Blaschke, T. Assessing the Influence of Tourism-Driven Activities on Environmental Variables on Hainan Island, China. Remote Sens. 2020, 12, 2813. https://doi.org/10.3390/rs12172813
Chu L, Oloo F, Chen B, Xie M, Blaschke T. Assessing the Influence of Tourism-Driven Activities on Environmental Variables on Hainan Island, China. Remote Sensing. 2020; 12(17):2813. https://doi.org/10.3390/rs12172813
Chicago/Turabian StyleChu, Lixia, Francis Oloo, Bin Chen, Miaomiao Xie, and Thomas Blaschke. 2020. "Assessing the Influence of Tourism-Driven Activities on Environmental Variables on Hainan Island, China" Remote Sensing 12, no. 17: 2813. https://doi.org/10.3390/rs12172813
APA StyleChu, L., Oloo, F., Chen, B., Xie, M., & Blaschke, T. (2020). Assessing the Influence of Tourism-Driven Activities on Environmental Variables on Hainan Island, China. Remote Sensing, 12(17), 2813. https://doi.org/10.3390/rs12172813