Enhancing the Efficacy of Radiation Therapy by Photochemical Internalization of Fibrin-Hydrogel-Delivered Bleomycin
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Chemicals
2.3. Fibrin Glue and Drug Harvest
2.4. Spheroid Formation
2.5. Radiation and PCI Treatment
2.6. Statistical Analysis
3. Results
3.1. Effects on Spheroid Growth of RT and BLM-PCI as a Single Treatment
3.2. RT Effects on Spheroid Growth by BLM and BLM-PCI as Free Drug
3.3. RT Effects on Spheroid Growth by BLMFG and BLMFG-PCI as FG-Released Drugs
3.4. Simultaneous Release of Both BLM and AlPcS2a
3.5. Comparison of RT and Light Radiation Dose on the Effects of BLM-PCI + RT
3.6. Effects of Treatment Delay Between BLMFG-PCI and RT
4. Discussion
In Vivo Translation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chamberlain, M.C. Radiographic patterns of relapse in glioblastoma. J. Neuro-Oncol. 2011, 101, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Dobelbower, M.C.; Burnett, O.L., III; Nordal, R.A.; Nabors, L.B.; Markert, J.M.; Hyatt, M.D.; Fiveash, J.B. Patterns of failure for glioblastoma multiforme following concurrent radiation and temozolomide. J. Med. Imaging Radiat. Oncol. 2011, 55, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Petrecca, K.; Guiot, M.C.; Panet-Raymond, V.; Souhami, L. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with Glioblastoma. J. Neuro-Oncol. 2013, 111, 19–23. [Google Scholar] [CrossRef]
- Citrin, D.E.; Mitchell, J.B. Altering the response to radiation: Sensitizers and protectors. Semin. Oncol. 2014, 41, 848–859. [Google Scholar] [CrossRef]
- Allison, R.R. Radiobiological modifiers in clinical radiation oncology: Current reality and future potential. Future Oncol. 2014, 10, 2359–2379. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of Radiosensitizers in Cancer Radiotherapy. Int. J. Nanomed. 2021, 16, 1083–1102. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.E.; Khuntia, D.; Robins, H.I.; Mehta, M.P. Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin. Adv. Hematol. Oncol. 2007, 5, 894–915. [Google Scholar]
- Alexander, B.M.; Ligon, K.L.; Wen, P.Y. Enhancing radiation therapy for patients with glioblastoma. Expert Rev. Anticancer Ther. 2013, 13, 569–581. [Google Scholar] [CrossRef]
- Brachman, D.G.; Pugh, S.L.; Ashby, L.S.; Thomas, T.A.; Dunbar, E.M.; Narayan, S.; Robins, H.I.; Bovi, J.A.; Rockhill, J.K.; Won, M.; et al. Phase 1/2 trials of Temozolomide, Motexafin Gadolinium, and 60-Gy fractionated radiation for newly diagnosed supratentorial glioblastoma multiforme: Final results of RTOG 0513. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 961–967. [Google Scholar] [CrossRef]
- Bastiancich, C.; Malfanti, A.; Préat, V.; Rahman, R. Rationally designed drug delivery systems for the local treatment of resected glioblastoma. Adv. Drug Deliv. Rev. 2021, 177, 113951. [Google Scholar] [CrossRef]
- Bastiancich, C.; Bozzato, E.; Henley, I.; Newland, B. Does local drug delivery still hold therapeutic promise for brain cancer? A systematic review. J. Control. Release 2021, 337, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Anai, S.; Hide, T.; Takezaki, T.; Kuroda, J.; Shinojima, N.; Makino, K.; Nakamura, H.; Yano, S.; Kuratsu, J. Antitumor effect of fibrin glue containing temozolomide against malignant glioma. Cancer Sci. 2014, 105, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Madsen, S.J.; Devarajan, A.G.; Chandekar, A.; Nguyen, L.; Hirschberg, H. Fibrin glue as a local drug and photosensitizer delivery system for photochemical internalization: Potential for bypassing the blood-brain barrier. Photodiagnosis Photodyn. Ther. 2023, 41, 103206. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, M.; Betts, D.; Suh, A.; Bui, K.; Kim, L.D.; Cho, H. Hydrogel-Based Drug Delivery Systems for Poorly Water-Soluble Drugs. Molecules 2015, 20, 20397–20408. [Google Scholar] [CrossRef] [PubMed]
- Pei, D.; Buyanova, M. Overcoming Endosomal Entrapment in Drug Delivery. Bioconjugate Chem. 2019, 30, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Jerjes, W.; Theodossiou, T.A.; Hirschberg, H.; Høgset, A.; Weyergang, A.; Selbo, P.K.; Hamdoon, Z.; Hopper, C.; Berg, K. Photochemical Internalization for Intracellular Drug Delivery. From Basic Mechanisms to Clinical Research. J. Clin. Med. 2020, 9, 528. [Google Scholar] [CrossRef]
- Selbo, P.K.; Bostad, M.; Olsen, C.E.; Edwards, V.T.; Høgset, A.; Weyergang, A.; Berg, K. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics. Photochem. Photobiol. Sci. 2015, 14, 1433–1450. [Google Scholar] [CrossRef]
- de Pinillos Bayona, A.M.; Moore, C.M.; Loizidou, M.; MacRobert, A.J.; Woodhams, J.H. Enhancing the efficacy of cytotoxic agents for cancer therapy using photochemical internalisation. Int. J. Cancer 2016, 138, 1049–1057. [Google Scholar] [CrossRef]
- Soe, T.H.; Watanabe, K.; Ohtsuki, T. Photoinduced Endosomal Escape Mechanism: A View from Photochemical Internalization Mediated by CPP-Photosensitizer Conjugates. Molecules 2020, 26, 36. [Google Scholar] [CrossRef]
- Berg, K.; Dietze, A.; Kaalhus, O.; Høgset, A. Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin. Clin. Cancer Res. 2005, 11, 8476–8485. [Google Scholar] [CrossRef]
- Mathews, M.S.; Blickenstaff, J.W.; Shih, E.C.; Zamora, G.; Vo, V.; Sun, C.-H.; Hirschberg, H.; Madsen, S.J. Photochemical internalization of bleomycin for glioma treatment. J. Biomed. Opt. 2012, 17, 058001. [Google Scholar] [CrossRef] [PubMed]
- Gederaas, O.A.; Hauge, A.; Ellingsen, P.G.; Berg, K.; Altin, D.; Bardal, T.; Høgset, A.; Lindgren, M. Photochemical internalization of bleomycin and temozolomide—In vitro studies on the glioma cell line F98. Photochem. Photobio. Sci. 2015, 14, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Sultan, A.A.; Jerjes, W.; Berg, K.; Høgset, A.; Mosse, C.A.; Hamoudi, R.; Hamdoon, Z.; Simeon, C.; Carnell, D.; Forster, M.; et al. Disulfonated tetraphenyl chlorin (TPCS2a)-induced photochemical internalization of bleomycin in patients with solid malignancies: A phase 1, dose-escalation, first-in-man trial. Lancet Oncol. 2016, 17, 1217–1229. [Google Scholar] [CrossRef] [PubMed]
- Norum, O.J.; Bruland, Ø.S.; Gorunova, L.; Berg, K. Photochemical internalization of bleomycin before external-beam radiotherapy improves locoregional control in a human sarcoma model. Int. J. Radiat. Oncol. Biol. Phy. 2009, 75, 878–885. [Google Scholar] [CrossRef]
- Barazzuol, L.; Coppes, R.P.; van Luijk, P. Prevention and treatment of radiotherapy-induced side effects. Mol. Oncol. 2020, 14, 1538–1554. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, M.; Cai, C.; Ye, C.; Guo, T.; Yang, K.; Xiao, H.; Tang, X.; Liu, H. Recent progress of hydrogel-based local drug delivery systems for postoperative radiotherapy. Front. Oncol. 2023, 13, 1027254. [Google Scholar] [CrossRef]
- Nguyen, J.; Chandekar, A.; Laurel, S.; Dosanjh, J.; Gupta, K.; Le, J.; Hirschberg, H. Fibrin glue mediated direct delivery of radiation sensitizers results in enhanced efficacy of radiation treatment. Discov. Oncol. 2024, 15, 101. [Google Scholar] [CrossRef]
- Poddevin, B.; Orlowski, S.; Belehradek, J.; Mir, L.M. Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture. Biochem. Pharmacol. 1991, 42, S67–S75. [Google Scholar] [CrossRef]
- Pron, G.; Mahrour, N.; Orlowski, S. Internalization of the bleomycin molecules responsible for bleomycin toxicity: A receptor-mediated endocytosis mechanism. Biochem. Pharmacol. 1999, 57, 45–56. [Google Scholar] [CrossRef]
- King, K.; Blumenfeld, P.; Shin, J.Y.; Tolekidis, G.; Diaz, A. Fractionated Stereotactic Radiotherapy and Stereotactic Radiosurgery as Salvage Treatment for Recurrent Malignant High-Grade Gliomas. J. Radiat. Oncol. Res. 2018, 2, 1003. [Google Scholar]
- Bucholz, R.D.; Laycock, K.A.; Cuff, L.E. CyberKnife stereotactic radiosurgery for intracranial neoplasms, with a focus on malignant tumors. Technol. Cancer Res. Treat. 2010, 9, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, J.; Montay-Gruel, P.; Gonçalves Jorge, P.; Bailat, C.; Petit, B.; Ollivier, J.; Jeanneret-Sozzi, W.; Ozsahin, M.; Bochud, F.; Moeckli, R.; et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother. Oncol. 2019, 139, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Montay-Gruel, P.; Acharya, M.M.; Gonçalves Jorge, P.; Petit, B.; Petridis, I.G.; Fuchs, P.; Leavitt, R.; Petersson, K.; Gondré, M.; Ollivier, J.; et al. Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice. Clin. Cancer Res. 2021, 27, 775–784. [Google Scholar] [CrossRef] [PubMed]
F98 Spheroids | |||
---|---|---|---|
BLM | Radiation | ||
6 Gy | 8 Gy | 10 Gy | |
Free BLM | 1.05 ± 0.11 * | 1.07 ± 0.12 | 1.04 ± 0.14 |
Free BLM-PCI | 1.2 ± 0.14 | 4.9 ± 0.30 | 5.6 ± 0.36 |
BLMFG | 1.15 ± 0.12 | 1.46 ± 0.11 | 1.3 ± 0.25 |
BLMFG-PCI | 1.85 ± 0.14 | 5.0 ± 0.39 | 4.9 ± 0.29 |
BT4C Spheroids | |||
BLM | Radiation | ||
6 Gy | 8 Gy | 10 Gy | |
Free BLM | 1.04 ± 0.11 * | 0.98 ± 0.10 | 1.06 ± 0.14 |
Free BLM-PCI | 1.1 ± 0.14 | 4.28 ± 0.24 | 5.21 ± 0.33 |
BLMFG | 1.01 ± 0.11 | 1.05 ± 0.14 | 1.28 ± 0.15 |
BLMFG-PCI | 1.77 ± 0.12 | 4.83 ± 0.36 | 5.45 ± 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurel, S.R.; Gupta, K.; Nguyen, J.; Chandekar, A.; Le, J.; Berg, K.; Hirschberg, H. Enhancing the Efficacy of Radiation Therapy by Photochemical Internalization of Fibrin-Hydrogel-Delivered Bleomycin. Cancers 2024, 16, 4029. https://doi.org/10.3390/cancers16234029
Laurel SR, Gupta K, Nguyen J, Chandekar A, Le J, Berg K, Hirschberg H. Enhancing the Efficacy of Radiation Therapy by Photochemical Internalization of Fibrin-Hydrogel-Delivered Bleomycin. Cancers. 2024; 16(23):4029. https://doi.org/10.3390/cancers16234029
Chicago/Turabian StyleLaurel, Sophia Renee, Keya Gupta, Jane Nguyen, Akhil Chandekar, Justin Le, Kristian Berg, and Henry Hirschberg. 2024. "Enhancing the Efficacy of Radiation Therapy by Photochemical Internalization of Fibrin-Hydrogel-Delivered Bleomycin" Cancers 16, no. 23: 4029. https://doi.org/10.3390/cancers16234029
APA StyleLaurel, S. R., Gupta, K., Nguyen, J., Chandekar, A., Le, J., Berg, K., & Hirschberg, H. (2024). Enhancing the Efficacy of Radiation Therapy by Photochemical Internalization of Fibrin-Hydrogel-Delivered Bleomycin. Cancers, 16(23), 4029. https://doi.org/10.3390/cancers16234029