Investigation on Erosion Resistance in Polyester–Jute Composites with Red Mud Particulate: Impact of Fibre Treatment and Particulate Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Samples Preparation
2.2. Characterisation Methods
2.2.1. X-ray Diffraction
2.2.2. Fourier Transform Infrared Spectroscopy
2.2.3. Erosion Test
2.2.4. Scanning Electron Microscope (SEM)
3. Results and Discussion
3.1. FTIR and XRD Analysis
3.2. Solid Particle Erosion Test
3.2.1. Erosion Rate at Different Impact Angles
3.2.2. Effect of Red Mud and Fibre Reinforcement
3.2.3. Erosion Rate and Treated Fibre Influence
3.3. Morphological Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Banazadeh-Neishabouri, N.; Shirazi, S.A. Development of Erosion Equations for Fiberglass Reinforced Plastic (FRP). Wear 2021, 476, 203657. [Google Scholar] [CrossRef]
- Tewari, U.S.; Harsha, A.P.; Häger, A.M.; Friedrich, K. Solid Particle Erosion of Unidirectional Carbon Fibre Reinforced Polyetheretherketone Composites. Wear 2002, 252, 992–1000. [Google Scholar] [CrossRef]
- Panchal, M.; Raghavendra, G.; Prakash, M.O.; Ojha, S. Effects of Environmental Conditions on Erosion Wear of Eggshell Particulate Epoxy Composites. Silicon 2018, 10, 627–634. [Google Scholar] [CrossRef]
- Shivani; Vishwakarma, J.; Dhand, C.; Shafeeq, M.M.; Salammal, S.T.; Gupta, G.K.; Mishra, A.; Dwivedi, N. “Red-Mud, A Golden Waste for Radiation Shielding”: Red-Mud Polymer Composites for High-Performance Radiation-Shielding Components. J. Hazard. Mater. Adv. 2024, 13, 100394. [Google Scholar] [CrossRef]
- Nayak, S.; Krishnan, N.M.A.; Das, S. Microstructure-Guided Numerical Simulation to Evaluate the Influence of Phase Change Materials (PCMs) on the Freeze-Thaw Response of Concrete Pavements. Constr. Build. Mater. 2019, 201, 246–256. [Google Scholar] [CrossRef]
- Das, G.; Biswas, S. Erosion Wear Behavior of Coir Fiber-Reinforced Epoxy Composites Filled with Al2O3 Filler. J. Ind. Text. 2017, 47, 472–488. [Google Scholar] [CrossRef]
- Patnaik, A.; Satapathy, A.; Mahapatra, S.S.; Dash, R.R. Implementation of Taguchi Design for Erosion of Fiber-Reinforced Polyester Composite Systems with SiC Filler. J. Reinf. Plast. Compos. 2008, 27, 1093–1111. [Google Scholar] [CrossRef]
- Sundarakannan, R.; Arumugaprabu, V.; Manikandan, V.; Deepak Joel Johnson, R. Tribo Performance Studies on Redmud Filled Pineapple Fiber Composite. Mater. Today Proc. 2020, 24, 1225–1234. [Google Scholar] [CrossRef]
- Bagci, M.; Imrek, H. Erosion Wear Performance of Borax Filled Novel Hybrid Composites by Using the Taguchi Experimental Design. Ind. Lubr. Tribol. 2016, 68, 134–140. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Uthayakumar, M.; Arumugaprabu, V. A Review on Erosion Studies of Fiber-Reinforced Polymer Composites. J. Reinf. Plast. Compos. 2017, 36, 1019–1027. [Google Scholar] [CrossRef]
- Johnson, R.D.J.; Arumugaprabu, V.; Uthayakumar, M.; Vigneshwaran, S.; Manikandan, V.; Bennet, C. Erosion Performance Studies on Sansevieria Cylindrica Reinforced Vinylester Composite. Mater. Res. Express 2018, 5, 035309. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, N. Utilization of Red Mud in Cement Production: A Review. Waste Manag. Res. 2011, 29, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Liu, X.; Zhang, Z.; Wei, C. Properties of Red Mud-Filled and Modified Resin Composites. Constr. Build. Mater. 2023, 409, 133984. [Google Scholar] [CrossRef]
- Samal, S.; Ray, A.K.; Bandopadhyay, A. Proposal for Resources, Utilization and Processes of Red Mud in India—A Review. Int. J. Miner. Process. 2013, 118, 43–55. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Uthayakumar, M.; Arumugaprabu, V. Solid Particle Erosion Study on Redmud—An Industrial Waste Reinforced Sisal/Polyester Hybrid Composite. Mater. Res. Express 2019, 6, 065307. [Google Scholar] [CrossRef]
- Banjare, J.; Sahu, Y.K.; Agrawal, A.; Satapathy, A. Physical and Thermal Characterization of Red Mud Reinforced Epoxy Composites: An Experimental Investigation. Procedia Mater. Sci. 2014, 5, 755–763. [Google Scholar] [CrossRef]
- Prabu, V.A.; Manikandan, V.; Uthayakumar, M. Effect of Red Mud on the Mechanical Properties of Banana/Polyester Composites Using Design of Experiments. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2013, 227, 143–155. [Google Scholar] [CrossRef]
- Rachchh, N.V.; Misra, R.K.; Roychowdhary, D.G. Effect of Red Mud Filler on Mechanical and Buckling Characteristics of Coir Fibre-Reinforced Polymer Composite. Iran. Polym. J. 2015, 24, 253–265. [Google Scholar] [CrossRef]
- Rajendran, S.; Yang, Y.; MARIMUTHU, U.; Veerasimman, A.; Palani, G.; Babu, K.; Shanmugam, V. Thrust Force and Delamination Analysis on Redmud-Filled Coconut Sheath Fibre Polyester Composite. Mech. Adv. Compos. Struct. 2024, 12, 43–52. [Google Scholar] [CrossRef]
- Rasu, K.; Veerabathiran, A. Effect of Red Mud on Mechanical and Thermal Properties of Agave Sisalana/Glass Fiber–Reinforced Hybrid Composites. Mater. Test. 2023, 65, 1879–1889. [Google Scholar] [CrossRef]
- Satapathy, A.; Patnaik, A. Analysis of Dry Sliding Wear Behavior of Red Mud Filled Polyester Composites Using the Taguchi Method. J. Reinf. Plast. Compos. 2010, 29, 2883–2897. [Google Scholar] [CrossRef]
- Harsha, A.P.; Thakre, A.A. Investigation on Solid Particle Erosion Behaviour of Polyetherimide and Its Composites. Wear 2007, 262, 807–818. [Google Scholar] [CrossRef]
- Padmaraj, N.H.; Vijaya, K.M.; Dayananda, P. Experimental Investigation on Solid Particle Erosion Behaviour of Glass/Epoxy Quasi-Isotropic Laminates. Mater. Res. Express 2019, 6, 085339. [Google Scholar] [CrossRef]
- Mangat, A.S.; Singh, S. Characterization of Natural Fibre-Embedded Biodegradable Porous Structures Prepared with Fused Deposition Process. J. Thermoplast. Compos. Mater. 2019, 32, 761–777. [Google Scholar] [CrossRef]
- Liang, N.; Yuan, Z.; Zhang, F. Oil Particle-Induced Erosion Wear on the Deflector Jet Servo Valve Prestage. Aerospace 2023, 10, 67. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef]
- Neto, J.S.S.; Lima, R.A.A.; Cavalcanti, D.K.K.; Souza, J.P.B.; Aguiar, R.A.A.; Banea, M.D. Effect of Chemical Treatment on the Thermal Properties of Hybrid Natural Fiber-reinforced Composites. J. Appl. Polym. Sci. 2019, 136, 47154. [Google Scholar] [CrossRef]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic Treatment of Natural Fibers and Their Composites—A Review. J. Ind. Text. 2018, 47, 2153–2183. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Rajendran, S.; Palani, G.; Karthik Babu, N.; Veerasimman, A.P.; Yang, Y.-L.; Shanmugam, V. Solid Particle Erosion in Fibre Composites: A Review. J. Reinf. Plast. Compos. 2024, 07316844241255007. [Google Scholar] [CrossRef]
- Mohanta, S.; Mahalik, P.; Hota, G.P.; Sahoo, B.B.; Pradhan, S.S.; Mohanty, S.P. Influence of Surface-treatment of Bamboo Fiber on the Physico-mechanical Properties of Bamboo Fiber Composites with Virgin and Recycled High-density Polyethylene. Polym. Compos. 2024, 45, 914–923. [Google Scholar] [CrossRef]
- Selvan, M.C.P.; Sankar, I.; Siva, I.; Dong, Y. Synergistic Effect of Fiber Surface Treatment and Nanoclays on the Damping Behaviors of Polyester Composites Reinforced with Palmyra Fruit Fibers. Polym. Bull. 2024, 81, 577–591. [Google Scholar] [CrossRef]
- Vijay, R.; Manoharan, S.; Arjun, S.; Vinod, A.; Singaravelu, D.L. Characterization of Silane-Treated and Untreated Natural Fibers from Stem of Leucas aspera. J. Nat. Fibers 2021, 18, 1957–1973. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Shazleen, S.S.; Aisyah, H.A.; Asyraf, M.R.M.; Sabaruddin, F.A.; Mohidem, N.A.; Norrrahim, M.N.F.; Kamarudin, S.H.; Ilyas, R.A.; Ishak, M.R.; et al. Effect of Silane Treatments on Mechanical Performance of Kenaf Fibre Reinforced Polymer Composites: A Review. Funct. Compos. Struct. 2021, 3, 045003. [Google Scholar] [CrossRef]
- Adeosun, S.; Taiwo, O.; Akpan, E.; Gbenebor, O.; Gbagba, S.; Olaleye, S. Mechanical Characteristics of Groundnut Shell Particle Reinforced Polylactide Nano Fibre. Matéria 2016, 21, 482–491. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohanty, J.R.; Nayak, S.; Behera, B. Chemical Treatment on Rattan Fibers: Durability, Mechanical, Thermal, and Morphological Properties. J. Nat. Fibers 2021, 18, 1762–1771. [Google Scholar] [CrossRef]
- Pulleti, S.S.; Singh, S.B. Effect of Curing Temperature on the Mechanical Properties of Hemp Fiber Reinforced Polymer Composites. Arab. J. Sci. Eng. 2024, 49, 13501–13518. [Google Scholar] [CrossRef]
- Khan, M.; Rahamathbaba, S.; Mateen, M.; Ravi Shankar, D.; Manzoor Hussain, M. Effect of NaOH Treatment on Mechanical Strength of Banana/Epoxy Laminates. Polym. Renew. Resour. 2019, 10, 19–26. [Google Scholar] [CrossRef]
- Khalili, P.; Skrifvars, M.; Ertürk, A. Fabrication, Mechanical Testing and Structural Simulation of Regenerated Cellulose Fabric Elium® Thermoplastic Composite System. Polymers 2021, 13, 2969. [Google Scholar] [CrossRef]
- Asumani, O.M.L.; Reid, R.G.; Paskaramoorthy, R. The Effects of Alkali–Silane Treatment on the Tensile and Flexural Properties of Short Fibre Non-Woven Kenaf Reinforced Polypropylene Composites. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1431–1440. [Google Scholar] [CrossRef]
- Sheeba, K.R.J.; Priya, R.K.; Arunachalam, K.P.; Shobana, S.; Avudaiappan, S.; Flores, E.S. Examining the Physico-Chemical, Structural and Thermo-Mechanical Properties of Naturally Occurring Acacia Pennata Fibres Treated with KMnO4. Sci. Rep. 2023, 13, 20643. [Google Scholar] [CrossRef] [PubMed]
- Manimaran, P.; Senthamaraikannan, P.; Murugananthan, K.; Sanjay, M.R. Physicochemical Properties of New Cellulosic Fibers from Azadirachta indica Plant. J. Nat. Fibers 2018, 15, 29–38. [Google Scholar] [CrossRef]
- Senthamaraikannan, P.; Kathiresan, M. Characterization of Raw and Alkali Treated New Natural Cellulosic Fiber from Coccinia grandis L. Carbohydr. Polym. 2018, 186, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, J.; Schmitt, G.F. Solid Particle Erosion of Reinforced Composite Materials. Wear 1981, 71, 179–190. [Google Scholar] [CrossRef]
- Dalbehera, S.; Acharya, S.K. Impact of Cenosphere on the Erosion Wear Response of Woven Hybrid Jute–Glass Epoxy Composites. Adv. Polym. Technol. 2018, 37, 240–246. [Google Scholar] [CrossRef]
- Ahmed, D.A.; Yerramalli, C.S. Experimental and Computational Analysis of the Erosion Behaviour of Unidirectional Glass Fiber Epoxy Composites. Wear 2020, 462–463, 203525. [Google Scholar] [CrossRef]
Fibre | Fibre wt.% | Red Mud wt.% | Matrix wt.% |
---|---|---|---|
Untreated | 40 | 0 | 60 |
40 | 10 | 50 | |
40 | 20 | 40 | |
40 | 30 | 30 | |
NaOH-treated | 40 | 0 | 60 |
40 | 10 | 50 | |
40 | 20 | 40 | |
40 | 30 | 30 | |
Silane-treated | 40 | 0 | 60 |
40 | 10 | 50 | |
40 | 20 | 40 | |
40 | 30 | 30 |
Bond Type | FTIR Peak Wave Number (cm−1) | ||
---|---|---|---|
UT | AT | AST | |
O–H stretching and hydrogen bonds | 3338 | 3331 | 3335 |
C–H stretching | 2943 | 2939 | 2943 |
C=O stretching of acetyl or carboxylic acid | 1741 | - | - |
Absorbed H2O | 1651 | 1658 | 1651 |
C=C | 1427 | 1427 | 1427 |
Treatment | Crystallinity (%) |
---|---|
Untreated sisal fibre | 38.9 |
NaOH-treated sisal fibre | 42.8 |
Silane-treated sisal fibre | 42.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, S.; Shanmugam, V.; Palani, G.; Marimuthu, U.; Veerasimman, A.; Korniejenko, K.; Oliinyk, I.; Trilaksana, H.; Sundaram, V. Investigation on Erosion Resistance in Polyester–Jute Composites with Red Mud Particulate: Impact of Fibre Treatment and Particulate Addition. Polymers 2024, 16, 2793. https://doi.org/10.3390/polym16192793
Rajendran S, Shanmugam V, Palani G, Marimuthu U, Veerasimman A, Korniejenko K, Oliinyk I, Trilaksana H, Sundaram V. Investigation on Erosion Resistance in Polyester–Jute Composites with Red Mud Particulate: Impact of Fibre Treatment and Particulate Addition. Polymers. 2024; 16(19):2793. https://doi.org/10.3390/polym16192793
Chicago/Turabian StyleRajendran, Sundarakannan, Vigneshwaran Shanmugam, Geetha Palani, Uthayakumar Marimuthu, Arumugaprabu Veerasimman, Kinga Korniejenko, Inna Oliinyk, Herri Trilaksana, and Vickram Sundaram. 2024. "Investigation on Erosion Resistance in Polyester–Jute Composites with Red Mud Particulate: Impact of Fibre Treatment and Particulate Addition" Polymers 16, no. 19: 2793. https://doi.org/10.3390/polym16192793
APA StyleRajendran, S., Shanmugam, V., Palani, G., Marimuthu, U., Veerasimman, A., Korniejenko, K., Oliinyk, I., Trilaksana, H., & Sundaram, V. (2024). Investigation on Erosion Resistance in Polyester–Jute Composites with Red Mud Particulate: Impact of Fibre Treatment and Particulate Addition. Polymers, 16(19), 2793. https://doi.org/10.3390/polym16192793