Deriving Tropical Cyclone-Associated Flood Hazard Information Using Clustered GPM-IMERG Rainfall Signatures: Case Study in Dominica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
2.2. Spatial Partitional Clustering Using K-Means
2.3. Temporal Alignment and Quantile Analysis
2.4. Flood Modelling
2.5. Case Study
3. Results
3.1. Results of the Spatial Partitional Clustering
3.2. Cluster Representative Precipitation Signals
3.3. Results for the Flooding Simulations
3.3.1. RPSs from K = 5
3.3.2. RPSs from K = 4 and K = 3
3.4. Selection of Final Rainfall Scenarios for TS Erika
3.5. Comparison
4. Discussion: Final Rainfall Scenarios for TS Erika
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
K = 5 | ||||||
Cluster | T1 | T2 | T3 | T4 | T5 | |
Cluster size | 132 | 798 | 433 | 399 | 149 | |
% | 6.9 | 41.8 | 22.7 | 20.9 | 7.8 | |
Maximum intensity (mm/h) | min | 55 | 0.4 | 36.4 | 18.2 | 32 |
max | 120 | 50.2 | 120 | 111 | 120 | |
Total rainfall (mm) | min | 451.5 | 1.4 | 201.1 | 47.8 | 121 |
max | 767.9 | 112.4 | 571.5 | 275.9 | 603.2 | |
mean | 583.9 | 29.4 | 344.2 | 167.5 | 331.4 | |
K = 4 | ||||||
Cluster | T1 | T2 | T3 | T4 | ||
Cluster size | 146 | 818 | 513 | 434 | ||
% | 7.6 | 42.8 | 26.8 | 22.7 | ||
Maximum intensity (mm/h) | min | 55 | 0.4 | 42 | 18.8 | |
max | 120 | 50.2 | 120 | 111 | ||
Total rainfall (mm) | min | 433.7 | 1.4 | 202.2 | 47.8 | |
max | 767.9 | 132.1 | 571.5 | 275.9 | ||
mean | 574.3 | 31.1 | 347.6 | 180.1 | ||
K = 3 | ||||||
Cluster | T1 | T2 | T3 | |||
Cluster size | 212 | 937 | 762 | |||
% | 11.1 | 49.0 | 39.9 | |||
Maximum intensity (mm/h) | min | 55 | 0.4 | 26 | ||
max | 120 | 68.6 | 120 | |||
Total rainfall (mm) | min | 352.5 | 1.4 | 83.6 | ||
max | 767.9 | 171.9 | 489.2 | |||
mean | 530.8 | 42.7 | 279.8 |
RPS | T1 | T3 | T4 | T5 |
Flood extent (km2) | ||||
Q0.5 | 3.98 | 3.12 | 1.02 | 1.40 |
Q0.75 | 4.84 | 3.76 | 2.19 | 3.12 |
Flood depth (m) | ||||
Q0.5 | 3.88 | 2.79 | 1.26 | 1.32 |
Q0.75 | 4.21 | 3.70 | 1.69 | 2.85 |
Flood volume (million m3) | ||||
Q0.5 | 1.67 | 1.10 | 0.42 | 0.56 |
Q0.75 | 2.28 | 1.50 | 0.77 | 1.12 |
Runoff ratio | ||||
Q0.5 | 0.80 | 0.71 | 0.33 | 0.43 |
Q0.75 | 0.85 | 0.77 | 0.59 | 0.74 |
Infiltration (mm) | ||||
Q0.5 | 92.14 | 75.31 | 60.83 | 77.82 |
Q0.75 | 97.42 | 86.61 | 73.03 | 98.50 |
Flood duration (h) | ||||
Q0.5 | 18.43 | 15.71 | 16.68 | 23.64 |
Q0.75 | 27.24 | 18.85 | 22.25 | 18.60 |
References
- Acevedo, S. Gone with the Wind: Estimating Hurricane and Climate Change Costs in the Caribbean; Working Paper No. 2016/199; International Monetary Fund: Washington, DC, USA, 2016. [Google Scholar]
- Nurse, L.A.; McLean, R.F.; Agard Trinidad, J.; Pascal Briguglio, L.; Duvat-Magnan, V.; Pelesikoti, N.; Tompkins, E.; Webb, A. Small Islands. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C., Dokken, D.J., Mastrandrea, M.D., Dokken, D.J., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1613–1654. [Google Scholar]
- Wilkinson, E.; Arvis, B.; Mendler de Suarez, J.; Weingärtner, L.; Jaime, C.; Grainger, N.; Simonet, C.; Bazo, J.; Kruczkiewicz, A. Preparing for Extreme Weather in the Eastern Caribbean; Working Paper 603; Overseas Development Institute: London, UK, 2021. [Google Scholar]
- Nugent, A.D.; Rios-Berrios, R. Factors Leading to Extreme Precipitation on Dominica from Tropical Storm Erika (2015). Mon. Weather. Rev. 2018, 146, 525–541. [Google Scholar] [CrossRef]
- Pasch, R.J.; Penny, A.B.; Berg, R. Hurricane Maria (AL152017); National Oceanic and Atmospheric Administration: Miami, FL, USA, 2017. [Google Scholar]
- Pasch, R.J.; Penny, A.B. Tropical Storm Erika (AL052015); National Oceanic and Atmospheric Administration: Miami, FL, USA, 2015. [Google Scholar]
- NOAA. How Do Hurricanes Form? National Oceanic and Atmospheric Adminicstration: Miami, FL, USA, 2024. [Google Scholar]
- Lin, Y.; Zhao, M.; Zhang, M. Tropical Cyclone Rainfall Area Controlled by Relative Sea Surface Temperature. Nat. Commun. 2015, 6, 6591. [Google Scholar] [CrossRef]
- Lonfat, M.; Rogers, R.; Marchok, T.; Marks, F.D. A Parametric Model for Predicting Hurricane Rainfall. Mon. Weather. Rev. 2007, 135, 3086–3097. [Google Scholar] [CrossRef]
- Ybañez, R. Understanding Rainfall Return Periods Understanding Rainfall Return Periods; University of the Philippines: Diliman, Quezon City, Philippines, 2013; Volume 1. [Google Scholar]
- De Risi, R.; Jalayer, F.; De Paola, F.; Carozza, S.; Yonas, N.; Giugni, M.; Gasparini, P. From Flood Risk Mapping toward Reducing Vulnerability: The Case of Addis Ababa. Nat. Hazards 2020, 100, 387–415. [Google Scholar] [CrossRef]
- Jetten, V.G. CHaRIM Project Dominica National Flood Hazard Map Methodology and Validation Report; University of Twente: Enschede, The Netherlands, 2016. [Google Scholar]
- DMS. Climatology for Canefield Airport 1982–2011; Dominica Meteorological Service: Canefield, Dominica, 2012. [Google Scholar]
- Smith, R.B.; Schafer, P.; Kirshbaum, D.J.; Regina, E. Orographic Precipitation in the Tropics: Experiments in Dominica. J. Atmos. Sci. 2009, 66, 1698–1716. [Google Scholar] [CrossRef]
- Pollock, M.D.; O’Donnell, G.; Quinn, P.; Dutton, M.; Black, A.; Wilkinson, M.E.; Colli, M.; Stagnaro, M.; Lanza, L.G.; Lewis, E.; et al. Quantifying and Mitigating Wind-Induced Undercatch in Rainfall Measurements. Water Resour. Res. 2018, 54, 3863–3875. [Google Scholar] [CrossRef]
- Veneziano, D.; Villani, P. Best Linear Unbiased Design Hyetograph. Water Resour. Res. 1999, 35, 2725–2738. [Google Scholar] [CrossRef]
- Bezak, N.; Šraj, M.; Rusjan, S.; Mikoš, M. Impact of the Rainfall Duration and Temporal Rainfall Distribution Defined Using the Huff Curves on the Hydraulic Flood Modelling Results. Geosciences 2018, 8, 69. [Google Scholar] [CrossRef]
- Balbastre-Soldevila, R.; García-Bartual, R.; Andrés-Doménech, I. A Comparison of Design Storms for Urban Drainage System Applications. Water 2019, 11, 757. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Lumbroso, D.M.; Boyce, S.; Bast, H.; Walmsley, N. The Challenges of Developing Rainfall Intensity-Duration-Frequency Curves and National Flood Hazard Maps for the Caribbean. J. Flood Risk Manag. 2011, 4, 42–52. [Google Scholar] [CrossRef]
- Richard, C.Y.L.; Zhou, W.; Lee, T.C. Climatological Characteristics and Observed Trends of Tropical Cyclone–Induced Rainfall and Their Influences on Long-Term Rainfall Variations in Hong Kong. Mon. Weather. Rev. 2015, 143, 2192–2206. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). Adv. Glob. Chang. Res. 2020, 67, 343–353. [Google Scholar]
- Adhikari, A.; Liu, C.; Hayden, L. Uncertainties of GPM Microwave Imager Precipitation Estimates Related to Precipitation System Size and Intensity. J. Hydrometeorol. 2019, 20, 1907–1923. [Google Scholar] [CrossRef]
- Wang, F. Temporal Pattern Analysis of Local Rainstorm Events in China During the Flood Season Based on Time Series Clustering. Water 2020, 12, 725. [Google Scholar] [CrossRef]
- Cristiano, E.; ten Veldhuis, M.-C.; Gaitan, S.; Ochoa Rodriguez, S.; van de Giesen, N. Critical Scales to Explain Urban Hydrological Response: An Application in Cranbrook, London. Hydrol. Earth Syst. Sci. 2018, 22, 2425–2447. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Neto, R.M.B.; da Silva, R.M.; Costa, S.G.F. Cluster Analysis Applied to Spatiotemporal Variability of Monthly Precipitation over Paraíba State Using Tropical Rainfall Measuring Mission (TRMM) Data. Remote Sens. 2019, 11, 637. [Google Scholar] [CrossRef]
- Ogden, F.L. Evidence of Equilibrium Peak Runoff Rates in Steep Tropical Terrain on the Island of Dominica during Tropical Storm Erika, August 27, 2015. J. Hydrol. 2016, 542, 35–46. [Google Scholar] [CrossRef]
- DMS. Rainfall Data on Tropical Storm, 26th to 27th August, 2015; Dominica Meteorological Service: Canefield, Dominica, 2015. [Google Scholar]
- GoCD. Rapid Damage and Impact Assessment Tropical Storm Erika-August 27, 2015; Government of the Commonwealth of Dominica: Roseau, Dominica, 2015. [Google Scholar]
- EM-DAT. Inventorying Hazards & Disasters Worldwide Since 1988; EM-DAT: Brussels, Belgium, 2024. [Google Scholar]
- Le, M.H.; Lakshmi, V.; Bolten, J.; Bui, D.D. Adequacy of Satellite-Derived Precipitation Estimate for Hydrological Modeling in Vietnam Basins. J. Hydrol. 2020, 586, 124820. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Chen, J. Evaluation of the GPM IMERG Satellite-Based Precipitation Products and the Hydrological Utility. Atmos. Res. 2017, 196, 151–163. [Google Scholar] [CrossRef]
- Mekonnen, K.; Melesse, A.M.; Woldesenbet, T.A. Spatial Evaluation of Satellite-Retrieved Extreme Rainfall Rates in the Upper Awash River Basin, Ethiopia. Atmos. Res. 2021, 249, 105297. [Google Scholar] [CrossRef]
- Cui, W.; Dong, X.; Xi, B.; Feng, Z.; Fan, J. Can the GPM IMERG Final Product Accurately Represent MCSs’ Precipitation Characteristics over the Central and Eastern United States? J. Hydrometeorol. 2020, 21, 39–57. [Google Scholar] [CrossRef]
- Tang, S.; Li, R.; He, J.; Wang, H.; Fan, X.; Yao, S. Comparative Evaluation of the GPM IMERG Early, Late, and Final Hourly Precipitation Products Using the CMPA Data over Sichuan Basin of China. Water 2020, 12, 554. [Google Scholar] [CrossRef]
- Qi, W.; Yong, B.; Gourley, J.J. Monitoring the Super Typhoon Lekima by GPM-Based Near-Real-Time Satellite Precipitation Estimates. J. Hydrol. 2021, 603, 126968. [Google Scholar] [CrossRef]
- NASA. NASA Finds Heavy Rain in New Tropical Cyclone Hola near Vanuatu; Goddard Space Flight Center: Greenbelt, MD, USA, 2018. [Google Scholar]
- Omranian, E.; Sharif, H.O.; Tavakoly, A.A. How Well Can Global Precipitation Measurement (GPM) Capture Hurricanes? Case Study: Hurricane Harvey. Remote Sens. 2018, 10, 1150. [Google Scholar] [CrossRef]
- NASA. IMERG: Integrated Multi-satellitE Retrievals for GPM | NASA Global Precipitation Measurement Mission; Goddard Space Flight Canter: Greenbelt, MD, USA, 2023. [Google Scholar]
- Landsea, C.W.; Franklin, J.L. Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format. Mon. Weather. Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Kisilevich, S.; Mansmann, F.; Nanni, M.; Rinzivillo, S. Spatio-Temporal Clustering. In Data Mining and Knowledge Discovery Handbook; Springer: Boston, MA, USA, 2009; pp. 855–874. [Google Scholar]
- Wu, X.; Cheng, C.; Zurita-Milla, R.; Song, C. An Overview of Clustering Methods for Geo-Referenced Time Series: From One-Way Clustering to Co- and Tri-Clustering. Int. J. Geogr. Inf. Sci. 2020, 34, 1822–1848. [Google Scholar] [CrossRef]
- Machiwal, D.; Dayal, D.; Kumar, S. Long-Term Rainfall Trends and Change Points in Hot and Cold Arid Regions of India. Hydrol. Sci. J. 2017, 62, 1050–1066. [Google Scholar] [CrossRef]
- Hadi, A.F.; Yudistira, I.; Anggraeni, D.; Hasan, M. The Geographical Clustering of The Rainfall Stations on Seasonal GSTAR Modeling for Rainfall Forecasting. J. Phys. Conf. Ser. 2018, 1028, 012238. [Google Scholar] [CrossRef]
- Alam, M.S.; Paul, S. A Comparative Analysis of Clustering Algorithms to Identify the Homogeneous Rainfall Gauge Stations of Bangladesh. J. Appl. Stat. 2019, 47, 1460–1481. [Google Scholar] [CrossRef]
- Naranjo-Fernández, N.; Guardiola-Albert, C.; Aguilera, H.; Serrano-Hidalgo, C.; Montero-González, E. Clustering Groundwater Level Time Series of the Exploited Almonte-Marismas Aquifer in Southwest Spain. Water 2020, 12, 1063. [Google Scholar] [CrossRef]
- Syakur, M.A.; Khotimah, B.K.; Rochman, E.M.S.; Satoto, B.D. Integration K-Means Clustering Method and Elbow Method for Identification of The Best Customer Profile Cluster. IOP Conf. Ser. Mater. Sci. Eng. 2018, 336, 012017. [Google Scholar] [CrossRef]
- Kodinariya, T.M.; Makwana, P.R. Review on Determining of Cluster in K-Means Clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2013, 1, 90–95. [Google Scholar]
- Ketchen, D.J.; Shook, C.L. The Application of Cluster Analysis in Strategic Management Research: An Analysis and Critique. Strateg. Manag. J. 1996, 17, 441–458. [Google Scholar] [CrossRef]
- Martin, J.E.; Sinclair, R.R. A Typology of the Part-Time Workforce: Differences on Job Attitudes and Turnover. J. Occup. Organ. Psychol. 2007, 80, 301–319. [Google Scholar] [CrossRef]
- Feldmann, M.; Emanuel, K.; Zhu, L.; Lohmann, U. Estimation of Atlantic Tropical Cyclone Rainfall Frequency in the United States. J. Appl. Meteorol. Climatol. 2019, 58, 1853–1866. [Google Scholar] [CrossRef]
- van Westen, C.J.; Alkema, D.; Damen, M.C.J.; Kerle, N.; Kingma, N.C. Multi-Hazard Risk Assessment Distance Education Course Guide Book; University of Twente: Enschede, The Netherlands, 2011. [Google Scholar]
- van der Knijff, J.M.; Younis, J.; De Roo, A.P.J. LISFLOOD: A GIS-Based Distributed Model for River Basin Scale Water Balance and Flood Simulation LISFLOOD: A GIS-Based Distributed Model for River Basin Scale Water Balance and Flood Simulation. Int. J. Geogr. Inf. Sci. 2008, 24, 189–212. [Google Scholar] [CrossRef]
- Mester, B.; Willner, S.N.; Frieler, K.; Schewe, J. Evaluation of River Flood Extent Simulated with Multiple Global Hydrological Models and Climate Forcings. Environ. Res. Lett. 2021, 16, 094010. [Google Scholar] [CrossRef]
- Leijnse, T.; van Ormondt, M.; Nederhoff, K.; van Dongeren, A. Modeling Compound Flooding in Coastal Systems Using a Computationally Efficient Reduced-Physics Solver: Including Fluvial, Pluvial, Tidal, Wind- and Wave-Driven Processes. Coast. Eng. 2021, 163, 103796. [Google Scholar] [CrossRef]
- van den Bout, B.; Jetten, V.G. The Validity of Flow Approximations When Simulating Catchment-Integrated Flash Floods. J. Hydrol. 2018, 556, 674–688. [Google Scholar] [CrossRef]
- Delestre, O.; Cordier, S.; Darboux, F.; Du, M.; James, F.; Laguerre, C.; Lucas, C.; Planchon, O.; Cordier, S.; James, Á.F.; et al. FullSWOF: A Software for Overland Flow Simulation. In Advances in Hydroinformatics; Springer Hydrogeology: Singapore, 2013; pp. 221–231. [Google Scholar]
- Umer, Y.M.; Jetten, V.G.; Ettema, J. Sensitivity of Flood Dynamics to Different Soil Information Sources in Urbanized Areas. J. Hydrol. 2019, 577, 123945. [Google Scholar] [CrossRef]
- Umer, Y.M.; Jetten, V.G.; Ettema, J.; Lombardo, L. Application of the WRF Model Rainfall Product for the Localized Flood Hazard Modeling in a Data-Scarce Environment. Nat. Hazards 2022, 111, 1813–1844. [Google Scholar] [CrossRef]
- van den Bout, B.; Jetten, V.G. Catchment-Scale Multi-Process Modeling with Local Time Stepping. Environ. Earth Sci. 2020, 79, 184. [Google Scholar] [CrossRef]
- Baartman, J.E.M.; Jetten, V.G.; Ritsema, C.J.; de Vente, J. Exploring Effects of Rainfall Intensity and Duration on Soil Erosion at the Catchment Scale Using OpenLISEM: Prado Catchment, SE Spain. Hydrol. Process 2012, 26, 1034–1049. [Google Scholar] [CrossRef]
- Starkloff, T.; Stolte, J.; Hessel, R.; Ritsema, C.; Jetten, V.G. Integrated, Spatial Distributed Modelling of Surface Runoff and Soil Erosion during Winter and Spring. Catena 2018, 166, 147–157. [Google Scholar] [CrossRef]
- van den Bout, B.; van Westen, C.J.; Jetten, V.G. Non-Monotonic Relationships between Return Periods of Precipitation Surface Hazard Intensity. Water 2022, 14, 1348. [Google Scholar] [CrossRef]
- Serere, H.N. Developing a Worst-Case Tropical Cyclone Rainfall Scenario for Flood on Dominica; Faculty of Geo-Information Science and Earth Observation of the University of Twente: Enschede, The Netherlands, 2020. [Google Scholar]
- Paul-Rolle, A. Commonwealth of Dominica Disaster Risk Reduction Country Profile; Office for Disaster Management: Roseau, Dominica, 2014. [Google Scholar]
- Barclay, J.; Wilkinson, E.; White, C.S.; Shelton, C.; Forster, J.; Few, R.; Lorenzoni, I.; Woolhouse, G.; Jowitt, C.; Stone, H.; et al. Historical Trajectories of Disaster Risk in Dominica. Int. J. Disaster Risk Sci. 2019, 10, 149–165. [Google Scholar] [CrossRef]
- Matyas, C.J. Quantifying the Shapes of U.S. Landfalling Tropical Cyclone Rain Shields. Prof. Geogr. 2007, 59, 158–172. [Google Scholar] [CrossRef]
- Ayala, J.J.; Matyas, C.J. Tropical Cyclone Rainfall over Puerto Rico and Its Relations to Environmental and Storm-specific Factors. Int. J. Climatol. 2016, 36, 2223–2237. [Google Scholar] [CrossRef]
- van Westen, C.J. National Scale Landslide Susceptibility Assessment for Dominica; University of Twente: Enschede, The Netherlands, 2016. [Google Scholar]
- Rouse, W.C.; Reading, A.J.; Walsh, R.P.D. Volcanic Soil Properties in Dominica, West Indies. Eng. Geol. 1986, 23, 1–28. [Google Scholar] [CrossRef]
- Llasat, M. An Objective Classification of Rainfall Events on the Basis of Their Convective Features: Application to Rainfall Intensity in the Northeast of Spain. Int. J. Climatol. 2001, 21, 1385–1400. [Google Scholar] [CrossRef]
- Dilmi, M.D.; Mallet, C.; Barthes, L.; Chazottes, A. Data-Driven Clustering of Rain Events: Microphysics Information Derived from Macro-Scale Observations. Atmos. Meas. Tech. 2017, 10, 1557–1574. [Google Scholar] [CrossRef]
- Zhang, Y.; Moges, S.; Block, P. Optimal Cluster Analysis for Objective Regionalization of Seasonal Precipitation in Regions of High Spatial–Temporal Variability: Application to Western Ethiopia. J. Clim. 2016, 29, 3697–3717. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.; Zhang, Y.; Xu, S. Spatial Patterns of Typhoon Rainfall and Associated Flood Characteristics over a Mountainous Watershed of a Tropical Island. J. Hydrol. 2022, 613, 128421. [Google Scholar] [CrossRef]
- Zhou, Y.; Matyas, C.J. Spatial Characteristics of Rain Fields Associated with Tropical Cyclones Landfalling over the Western Gulf of Mexico and Caribbean Sea. J. Appl. Meteorol. Climatol. 2018, 57, 1711–1727. [Google Scholar] [CrossRef]
- Zagrodnik, J.P.; Jiang, H. Investigation of PR and TMI Version 6 and Version 7 Rainfall Algorithms in Landfalling Tropical Cyclones Relative to the NEXRAD Stage-IV Multisensor Precipitation Estimate Dataset. J. Appl. Meteorol. Climatol. 2013, 52, 2809–2827. [Google Scholar] [CrossRef]
- Matyas, C.J. Conditions Associated with Large Rain-Field Areas for Tropical Cyclones Landfalling over Florida. Phys. Geogr. 2014, 35, 93–106. [Google Scholar] [CrossRef]
K = 5 | ||||||||||||
T1 | T3 | T4 | T5 | |||||||||
RPS | Tr (mm) | Imax (mm/h) | Dr (h) | Tr (mm) | Imax (mm/h) | Dr (h) | Tr (mm) | Imax (mm/h) | Dr (h) | Tr (mm) | Imax (mm/h) | Dr (h) |
Q0.5 | 518.9 | 73.1 | 17.5 | 307.1 | 50.2 | 15.5 | 107.6 | 20.2 | 14.5 | 159.7 | 24.6 | 18.0 |
Q0.75 | 729.9 | 94.9 | 25.0 | 440.0 | 63.8 | 17.5 | 209.9 | 38.9 | 20.5 | 427.3 | 61.6 | 22.5 |
Q0.9 | 1029.1 | 112.4 | 31.5 | 587.0 | 75.8 | 23.5 | 345.3 | 55.2 | 23.5 | 834.9 | 94.5 | 25.0 |
K = 4 | ||||||||||||
T1 | T3 | T4 | ||||||||||
Tr (mm) | Imax (mm/h) | Dr (h) | Tr (mm) | Imax (mm/h) | Dr (h) | Tr (mm) | Imax (mm/h) | Dr (h) | ||||
Q0.75 | 727.3 | 91.4 | 25.0 | 446.2 | 65.0 | 18.0 | 230.4 | 42.2 | 18.0 | |||
K = 3 | ||||||||||||
T1 | T3 | |||||||||||
Tr (mm) | Imax (mm/h) | Dr (h) | Tr (mm) | Imax (mm/h) | Dr (h) | |||||||
Q0.75 | 676.6 | 84.9 | 24.5 | 381.3 | 59.0 | 17.5 |
K = 4 | ||||||
Flood extent (km2) | Flood depth (m) | Flood volume (million m3) | Runoff ratio | Infiltration (mm) | Flood duration (h) | |
T1 | 4.80 | 4.22 | 2.22 | 0.85 | 98.13 | 23.73 |
T3 | 3.70 | 3.65 | 1.42 | 0.77 | 88.95 | 19.16 |
Diff | 1.09 | 0.57 | 0.79 | 0.08 | 9.18 | 4.57 |
T1 | 4.80 | 4.22 | 2.22 | 0.85 | 98.13 | 23.73 |
T4 | 2.47 | 1.84 | 0.84 | 0.62 | 74.08 | 29.33 |
Diff | 2.32 | 2.39 | 1.38 | 0.23 | 24.06 | −5.61 |
T3 | 3.70 | 3.65 | 1.42 | 0.77 | 88.95 | 19.16 |
T4 | 2.47 | 1.84 | 0.84 | 0.62 | 74.08 | 29.33 |
Diff | 1.23 | 1.82 | 0.59 | 0.15 | 14.87 | −10.17 |
K = 3 | ||||||
Flood extent (km2) | Flood depth (m) | Flood volume (million m3) | Runoff ratio | Infiltration (mm) | Flood duration (h) | |
T1 | 4.62 | 4.18 | 2.05 | 0.84 | 97.69 | 22.76 |
T3 | 3.48 | 3.35 | 1.28 | 0.74 | 84.40 | 20.83 |
Diff | 1.14 | 0.83 | 0.77 | 0.10 | 13.29 | 1.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabukulu, C.; Jetten, V.G.; Ettema, J.; van den Bout, B.; Haarsma, R.J. Deriving Tropical Cyclone-Associated Flood Hazard Information Using Clustered GPM-IMERG Rainfall Signatures: Case Study in Dominica. Atmosphere 2024, 15, 1042. https://doi.org/10.3390/atmos15091042
Nabukulu C, Jetten VG, Ettema J, van den Bout B, Haarsma RJ. Deriving Tropical Cyclone-Associated Flood Hazard Information Using Clustered GPM-IMERG Rainfall Signatures: Case Study in Dominica. Atmosphere. 2024; 15(9):1042. https://doi.org/10.3390/atmos15091042
Chicago/Turabian StyleNabukulu, Catherine, Victor G. Jetten, Janneke Ettema, Bastian van den Bout, and Reindert J. Haarsma. 2024. "Deriving Tropical Cyclone-Associated Flood Hazard Information Using Clustered GPM-IMERG Rainfall Signatures: Case Study in Dominica" Atmosphere 15, no. 9: 1042. https://doi.org/10.3390/atmos15091042