An LGAD-Based Full Active Target for the PIONEER Experiment
Abstract
:1. Introduction
2. PIONEER
3. Active Target (ATAR)
4. LGAD Technology
5. Electronics and Readout Chain
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cirigliano, V.; Rosell, I. Two-Loop Effective Theory Analysis of π(K)→ee[γ] Branching Ratios. Phys. Rev. Lett. 2007, 99, 231801. [Google Scholar] [CrossRef] [Green Version]
- Cirigliano, V.; Rosell, I. pi/K —> e anti-nu(e) branching ratios to O(e**2 p**4) in Chiral Perturbation Theory. JHEP 2007, 10, 005. [Google Scholar] [CrossRef] [Green Version]
- Bryman, D.A.; Marciano, W.; Tschirhart, R.; Yamanaka, T. Rare Kaon and Pion Decays: Incisive Probes for New Physics beyond the Standard Model. Ann. Rev. Nucl. Part Sci. 2011, 61, 331. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A.; Aoki, M.; Blecher, M.; Britton, D.I.; Bryman, D.A.; Vom Bruch, D.; Chen, S.; Comfort, J.; Ding, M.; Doria, L.; et al. Improved Measurement of the π→eν Branching Ratio. Phys. Rev. Lett. B 2015, 115, 071801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaij, R.; Beteta, C.; Adeva, B.; Adinolfi, M.; Aidala, C.A.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; Alessio, F.; et al. Search for lepton-universality violation in B+→K+ℓ+ℓ- decays. Phys. Rev. Lett. 2019, 122, 191801. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.A.; Aoki, M.; Blecher, M.; Vom Bruch, D.; Bryman, D.; Comfort, J.; Cuen-Rochin, S.; Doria, L.; Gumplinger, P.; Hussein, A.; et al. Detector for measuring the π+→e+νe branching fraction. Nucl. Instrum. Method 2015, A791, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.A.; Aoki, M.; Blecher, M.; Bryman, D.; Doria, L.; Gumplinger, P.; Hussein, A.; Ito, N.; Kettell f, S.; Kurchaninov, L.; et al. Study of a large NaI(Tl) crystal. Nucl. Instrum. Method 2010, A621, 188. [Google Scholar] [CrossRef] [Green Version]
- Pen Collaboration. Available online: http://pen.phys.virginia.edu/ (accessed on 13 December 2021).
- Glaser, C.J.; Pocanic, D.; Alonzi, L.P.; Baranov, V.A.; Bertl, W.; Bychkov, M.; Bystritsky, Y.M.; Frlez, E.; Kalinnikov, V.A.; Khomutov, N.V.; et al. PEN experiment: A precise test of lepton universality. arXiv 2018, arXiv:1812.00782. [Google Scholar]
- Počanić, D.; Frlež, E.; van der Schaaf, A. Experimental study of rare charged pion decays. J. Phys.G 2014, 41, 114002. [Google Scholar] [CrossRef] [Green Version]
- Cabibbo, N. Unitary Symmetry and Leptonic Decays. Phys. Rev. Lett. 1963, 10, 531. [Google Scholar] [CrossRef]
- Kobayashi, M.; Maskawa, T. CP-Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys. 1973, 49, 652. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, A.; Marciano, W.J.; Sirlin, A. Pion beta decay and Cabibbo-Kobayashi-Maskawa unitarity. Phys. Rev. D 2020, 101, 091301. [Google Scholar] [CrossRef]
- Pibeta Collaboration. Available online: http://pibeta.phys.virginia.edu/ (accessed on 13 December 2021).
- Frlez, E.; Pocanic, D.; Assamagan, K.A.; Bagaturia, Y.; Baranov, V.A.; Bertl, W.; Broennimann, C.; Bychkov, M.A.; Crawford, J.F.; Daum, M.; et al. Design, commissioning and performance of the PIBETA detector at PSI. Nucl. Instrum. Meth. A 2004, 526, 300–347. [Google Scholar] [CrossRef] [Green Version]
- Počanić, D.; Frlež, E.; Baranov, V.A.; Bertl, W.; Brönnimann, C.; Bychkov, M.; Crawford, J.F.; Daum, M.; Khomutov, N.V.; Korenchenko, A.S.; et al. Precise Measurement of the π+→π0e+ν Branching Ratio. Phys. Rev. Lett. 2004, 93, 181803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frlež, E.; Počanić, D.; Baranov, V.A.; Bertl, W.; Bychkov, M.; Khomutov, N.V.; Korenchenko, A.S.; Korenchenko, S.M.; Kozlowski, T.; Kravchuk, N.P.; et al. Precise Measurement of the Pion Axial Form Factor in the π+→e+νγ Decay. Phys. Rev. Lett. 2004, 93, 181804. [Google Scholar] [CrossRef] [Green Version]
- Bychkov, M.; Počanić, D.; VanDevender, B.A.; Baranov, V.A.; Bertl, W.; Bystritsky, Y.M.; Frlež, E.; Kalinnikov, V.A.; Khomutov, N.V.; Korenchenko, A.S.; et al. New Precise Measurement of the Pion Weak Form Factors in π+→e+νγ Decay. Phys. Rev. Lett. 2009, 103, 051802. [Google Scholar] [CrossRef] [Green Version]
- Sirlin, A. Current algebra formulation of radiative corrections in gauge theories and the universality of the weak interactions. Rev. Mod. Phys. 1978, 50, 573. [Google Scholar] [CrossRef]
- Cirigliano, V.; Knecht, M.; Neufeld, H.; Pvichl, H. The pionic beta decay in chiral perturbation theory. Eur. Phys. J. C 2003, 27, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Passera, M.; Philippides, K.; Sirlin, A. Observations on the radiative corrections to pion β decay. Phys. Rev. D 2011, 84, 094030. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Gorchtein, M.; Jin, L.-C.; Ma, P.-X.; Seng, C.-Y. First-Principles Calculation of Electroweak Box Diagrams from Lattice QCD. Phys. Rev. Lett. 2020, 124, 192002. [Google Scholar] [CrossRef]
- MEG Collaboration. Search for the lepton flavour violating decay μ+→e+γ with the full dataset of the MEG experiment. Eur. Phys. J. C 2016, 76, 434. [Google Scholar] [CrossRef] [Green Version]
- Mao, R.; Zhang, L.; Zhu, R.-Y. Lso/lyso crystals for future hep experiments. J. Phys. Conf. Ser 2011, 4, 293215220. [Google Scholar] [CrossRef] [Green Version]
- Cenna, F.; Cartiglia, N.; Friedl, M.; Kolbinger, B.; Sadrozinski, H.F.-W.; Seiden, A.; Zatserklyaniy, A.; Zatserklyaniy, A. Weightfield2: A fast simulator for silicon and diamond solid state detector. Nucl. Instrum. Meth. 2015, A796, 149–153. [Google Scholar] [CrossRef]
- CERN; LHCC. A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade; Technical Report for ATLAS Collaboration: Meyrin, Switzerland, 2020. [Google Scholar]
- Apresyan, A.; Chen, W.; D’Amen, G.; Petrillo, K.F.D.; Giacomini, G.; Heller, R.; Lee, H.; Los, S.; Moon, C.S.; Tricoli, A. Measurements of an AC-LGAD strip sensor with a 120 GeV proton beam. JINST 2020, 15, P09038. [Google Scholar] [CrossRef]
- Paternoster, G.; Borghi, G.; Boscardin, M.; Cartiglia, N.; Ferrero, M.; Ficorella, F.; Siviero, F.; Gola, A.; Bellutti, P. Trench-isolated low gain avalanche diodes (ti-lgads). IEEE Electron. Device Lett. 2020, 41, 884–887. [Google Scholar] [CrossRef]
- Ayyoub, S.; Gee, C.; Islam, R.; Mazza, S.M.; Schumm, B.; Seiden, A.; Zhao, Y. A new approach to achieving high granularity for silicon diode detectors with impact ionization gain. arXiv 2021, arXiv:2101.00511. [Google Scholar]
- Pellegrini, G.; Fernández-Martínez, P.; Baselga, M.; Fleta, C.; Flores, D.; Greco, V.; Hidalgo, S.; Mandić, I.; Kramberger, G.; Quirion, D.; et al. Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications. Nucl. Instrum. Meth. 2014, A765, 12–16. [Google Scholar] [CrossRef]
- Sadrozinski, H. Investigating AC-LGAD (RSD) Properties through Pulse Shapes. Available online: https://indico.cern.ch/event/861104/contributions/4503072/attachments/2306673/3924214/H.%20Sadrozinski.pdf (accessed on 13 December 2021).
- Tornago, M.; Arcidiacono, R.; Cartiglia, N.; Costa, M.; Ferrero, M.; Mandurrino, M.; Siviero, F.; Sola, V.; Staiano, A.; Apresyan, A.; et al. Resistive ac-coupled silicon detectors: Principles of operation and first results from a combined analysis of beam test and laser data. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2021, 1003, 165319. [Google Scholar] [CrossRef]
- Particulars-TCT. Available online: http://particulars.si/ (accessed on 13 December 2021).
- TCAD-Silvaco. Available online: https://silvaco.com/tcad/ (accessed on 13 December 2021).
- Ryan, E. Development of AC-LGADs for Large-Scale High-Precision Time and Position Measurements. Available online: https://indico.cern.ch/event/981823/contributions/4295547/ (accessed on 13 December 2021).
- Rivera, E. Gain Suppression Mechanism Observed in Low Gain Avalanche Detectors. Available online: https://indico.cern.ch/event/983068/contributions/4223231/ (accessed on 13 December 2021).
- Olave, E.; Fausti, F.; Cartiglia, N.; Arcidiacono, R.; Sadrozinski, H.-W.; Seiden, A. Design and characterization of the fast chip: A front-end for 4d tracking systems based on ultra-fast silicon detectors aiming at 30 ps time resolution. Nucl. Instrum. Methods Phys. Res. Accel. Spectrometers Detect. Assoc. Equip. 2021, 985, 164615. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazza, S.M. An LGAD-Based Full Active Target for the PIONEER Experiment. Instruments 2021, 5, 40. https://doi.org/10.3390/instruments5040040
Mazza SM. An LGAD-Based Full Active Target for the PIONEER Experiment. Instruments. 2021; 5(4):40. https://doi.org/10.3390/instruments5040040
Chicago/Turabian StyleMazza, Simone Michele. 2021. "An LGAD-Based Full Active Target for the PIONEER Experiment" Instruments 5, no. 4: 40. https://doi.org/10.3390/instruments5040040
APA StyleMazza, S. M. (2021). An LGAD-Based Full Active Target for the PIONEER Experiment. Instruments, 5(4), 40. https://doi.org/10.3390/instruments5040040