Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (36,144)

Search Parameters:
Keywords = nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2322 KiB  
Review
PLA- and PHA-Biopolyester-Based Electrospun Materials: Development, Legislation, and Food Packaging Applications
by Cristian Patiño Vidal, Cristina Muñoz-Shugulí, Manon Guivier, Débora Puglia, Francesca Luzi, Adrián Rojas, Eliezer Velásquez, María José Galotto and Carol López-de-Dicastillo
Molecules 2024, 29(22), 5452; https://doi.org/10.3390/molecules29225452 (registering DOI) - 19 Nov 2024
Abstract
The high accumulation of plastic waste in the environment has led to great interest in biodegradable polymers, such as polylactic acid (PLA) or polyhydroxyalkanoates (PHAs). Their benefits, combined with the application of electrospinning technology, represent an innovative proposal for the food packaging industry. [...] Read more.
The high accumulation of plastic waste in the environment has led to great interest in biodegradable polymers, such as polylactic acid (PLA) or polyhydroxyalkanoates (PHAs). Their benefits, combined with the application of electrospinning technology, represent an innovative proposal for the food packaging industry. This article provides a comprehensive review of the latest developments of PLA- and PHA-biopolyester-based electrospun materials for food packaging applications, summarizing the reported technologies, material properties, applications, and invention patents. In addition, the legislation used to assess their biodegradability is also detailed. Electrospun packaging materials are largely developed through uniaxial, coaxial, emulsion, multiaxial, and needleless techniques. PLA- and PHA-biopolyester-based electrospun materials can be obtained as single and multilayer packaging structures, and the incorporation of natural extracts, organic compounds, and nanoparticles has become a great strategy for designing active food packaging systems. The biodegradability of electrospun materials has mainly been evaluated in soil, compost, and aquatic systems through ASTM and ISO normatives. In this review, the dependence of the biodegradation process on the polymer type, conditions, and test methods is clearly reviewed. Moreover, these biodegradable electrospun materials have shown excellent antioxidant and antimicrobial properties, resulting in a great method for extending the shelf life of fruits, bread, fish, and meat products. Full article
Show Figures

Graphical abstract

47 pages, 3373 KiB  
Review
The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders
by Daniélle van Staden, Minja Gerber and Hendrik J. R. Lemmer
Pharmaceutics 2024, 16(11), 1475; https://doi.org/10.3390/pharmaceutics16111475 (registering DOI) - 19 Nov 2024
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic [...] Read more.
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders. Full article
(This article belongs to the Special Issue Drug Delivery in the Reproductive Systems)
Show Figures

Figure 1

22 pages, 5326 KiB  
Article
Improving the Theranostic Potential of Magnetic Nanoparticles by Coating with Natural Rubber Latex for Ultrasound, Photoacoustic Imaging, and Magnetic Hyperthermia: An In Vitro Study
by Thiago T. Vicente, Saeideh Arsalani, Mateus S. Quiel, Guilherme S. P. Fernandes, Keteryne R. da Silva, Sandra Y. Fukada, Alexandre J. Gualdi, Éder J. Guidelli, Oswaldo Baffa, Antônio A. O. Carneiro, Ana Paula Ramos and Theo Z. Pavan
Pharmaceutics 2024, 16(11), 1474; https://doi.org/10.3390/pharmaceutics16111474 - 19 Nov 2024
Viewed by 96
Abstract
Background/Objectives: Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise [...] Read more.
Background/Objectives: Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise their functionality. Natural rubber latex (NRL) offers a promising coating alternative due to its biocompatibility and stability-enhancing properties. While NRL-coated MNPs have shown potential in applications such as magnetic resonance imaging, their effectiveness in theranostics, particularly magnetic hyperthermia (MH) and photoacoustic imaging (PAI), remains underexplored. Methods: In this study, iron oxide nanoparticles were synthesized via coprecipitation, using NRL as the coating agent. The samples were labeled by NRL amount used during synthesis: NRL-100 for 100 μL and NRL-400 for 400 μL. Results: Characterization results showed that NRL-100 and NRL-400 samples exhibited improved stability with zeta potentials of −27 mV and −30 mV, respectively and higher saturation magnetization values of 79 emu/g and 88 emu/g of Fe3O4. Building on these findings, we evaluated the performance of these nanoparticles in biomedical applications, including magnetomotive ultrasound (MMUS), PAI, and MH. NRL-100 and NRL-400 samples showed greater displacements and higher contrast in MMUS than uncoated samples (5, 8, and 9 µm) at 0.5 wt%. In addition, NRL-coated samples demonstrated an improved signal-to-noise ratio (SNR) in PAI. SNR values were 24.72 (0.51), 31.44 (0.44), and 33.81 (0.46) dB for the phantoms containing uncoated MNPs, NRL-100, and NRL-400, respectively. Calorimetric measurements for MH confirmed the potential of NRL-coated MNPs as efficient heat-generating agents, showing values of 43 and 40 W/g for NRL-100 and NRL-400, respectively. Conclusions: Overall, NRL-coated MNPs showed great promise as contrast agents in MMUS and PAI imaging, as well as in MH applications. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Applications of Magnetic Nanomaterials)
Show Figures

Figure 1

36 pages, 5088 KiB  
Article
Eco-Friendly Synthesis of ZnO Nanoparticles for Quinoline Dye Photodegradation and Antibacterial Applications Using Advanced Machine Learning Models
by Hayet Chelghoum, Noureddine Nasrallah, Hichem Tahraoui, Mahmoud F. Seleiman, Mustapha Mounir Bouhenna, Hayet Belmeskine, Meriem Zamouche, Souhila Djema, Jie Zhang, Amina Mendil, Fayçal Dergal, Mohammed Kebir and Abdeltif Amrane
Catalysts 2024, 14(11), 831; https://doi.org/10.3390/catal14110831 (registering DOI) - 19 Nov 2024
Viewed by 115
Abstract
Community drinking water sources are increasingly contaminated by various point and non-point sources, with emerging organic contaminants and microbial strains posing health risks and disrupting ecosystems. This study explores the use of zinc oxide nanoparticles (ZnO-NPs) as a non-specific agent to address groundwater [...] Read more.
Community drinking water sources are increasingly contaminated by various point and non-point sources, with emerging organic contaminants and microbial strains posing health risks and disrupting ecosystems. This study explores the use of zinc oxide nanoparticles (ZnO-NPs) as a non-specific agent to address groundwater contamination and combat microbial resistance effectively. The ZnO-NPs were synthesized via a green chemistry approach, employing a sol-gel method with lemon peel aqueous extract. The catalyst was characterized using techniques including XRD, ATR-FTIR, SEM-EDAX, UV-DRS, BET, and Raman spectroscopy. ZnO-NPs were then tested for photodegradation of quinoline yellow dye (QY) under sunlight irradiation, as well as for their antibacterial and antioxidant properties. The ZnO-NP photocatalyst showed significant photoactivity, attributed to effective separation of photogenerated charge carriers. The efficiency of sunlight dye photodegradation was influenced by catalyst dosage (0.1–0.6 mg L−1), pH (3–11), and initial QY concentration (10–50 mg L−1). The study developed a first-order kinetic model for ZnO-NPs using the Langmuir–Hinshelwood equation, yielding kinetic constants of equilibrium adsorption and photodegradation of Kc = 6.632 × 10−2 L mg−1 and kH = 7.104 × 10−2 mg L−1 min−1, respectively. The results showed that ZnO-NPs were effective against Gram-positive bacterial strains and showed moderate antioxidant activity, suggesting their potential in wastewater disinfection to achieve sustainable development goals. A potential antibacterial mechanism of ZnO-NPs involving interactions with microbial cells is proposed. Additionally, Gaussian Process Regression (GPR) combined with an improved Lévy flight distribution (FDB-LFD) algorithm was used to model QY photodegradation by ZnO-NPs. The ARD-Exponential kernel function provided high accuracy, validated through residue analysis. Finally, an innovative MATLAB-based application was developed to integrate the GPR_FDB-LFD model and FDB-LFD algorithm, streamlining optimization for precise photodegradation rate predictions. The results obtained in this study show that the GPR and FDB-LFD approaches offer efficient and cost-effective methods for predicting dye photodegradation, saving both time and resources. Full article
(This article belongs to the Special Issue Cutting-Edge Photocatalysis)
Show Figures

Figure 1

19 pages, 4523 KiB  
Article
Cr3+ Doping Effects on Structural, Optical, and Morphological Characteristics of BaTiO3 Nanoparticles and Their Bioactive Behavior
by Efracio Mamani Flores, Bertha Silvana Vera Barrios, Julio César Huillca Huillca, Jesús Alfredo Chacaltana García, Carlos Armando Polo Bravo, Henry Edgardo Nina Mendoza, Alberto Bacilio Quispe Cohaila, Francisco Gamarra Gómez, Rocío María Tamayo Calderón, Gabriela de Lourdes Fora Quispe and Elisban Juani Sacari Sacari
Crystals 2024, 14(11), 998; https://doi.org/10.3390/cryst14110998 (registering DOI) - 19 Nov 2024
Viewed by 104
Abstract
This study investigates the effects of chromium (Cr3+) doping on BaTiO3 nanoparticles synthesized via the sol–gel route. X-ray diffraction confirms a Cr-induced cubic-to-tetragonal phase transition, with lattice parameters and crystallite size varying systematically with Cr3+ content. UV–visible spectroscopy reveals [...] Read more.
This study investigates the effects of chromium (Cr3+) doping on BaTiO3 nanoparticles synthesized via the sol–gel route. X-ray diffraction confirms a Cr-induced cubic-to-tetragonal phase transition, with lattice parameters and crystallite size varying systematically with Cr3+ content. UV–visible spectroscopy reveals a monotonic decrease in bandgap energy from 3.168 eV (pure BaTiO3) to 2.604 eV (5% Cr3+-doped BaTiO3). Raman and FTIR spectroscopy elucidate structural distortions and vibrational mode alterations caused by Cr3+ incorporation. Transmission electron microscopy and energy-dispersive X-ray spectroscopy verify nanoscale morphology and successful Cr3+ doping (up to 1.64 atom%). Antioxidant activity, evaluated using the DPPH assay, shows stable radical scavenging for pure BaTiO3 (40.70–43.33%), with decreased activity at higher Cr3+ doping levels. Antibacterial efficacy against Escherichia coli peaks at 0.5% Cr3+ doping (10.569 mm inhibition zone at 1.5 mg/mL), decreasing at higher concentrations. This study demonstrates the tunability of structural, optical, and bioactive properties in Cr3+-doped BaTiO3 nanoparticles, highlighting their potential as multifunctional materials for electronics, photocatalysis, and biomedical applications. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

20 pages, 8040 KiB  
Article
A Modified Novel Validated High-Throughput Hemagglutinin Inhibition Assay Using Recombinant Virus-like Particles and Human Red Blood Cells for the Objective Evaluation of Recombinant Hemagglutinin Nanoparticle Seasonal Influenza Vaccine
by Timothy S. Vincent, Mingzhu Zhu, Anand Parekh, Urvashi Patel, Shane Cloney-Clark, Andrew Klindworth, David Silva, Andrew Gorinson, Karlee Miranda, Mi Wang, Zachary Longacre, Bin Zhou, Iksung Cho, Rongman Cai, Raj Kalkeri, Louis Fries, Vivek Shinde and Joyce S. Plested
Microorganisms 2024, 12(11), 2358; https://doi.org/10.3390/microorganisms12112358 - 19 Nov 2024
Viewed by 112
Abstract
Currently available seasonal influenza vaccines confer variable protection due to antigenic changes resulting from the accumulation of diverse mutations. The analysis of new seasonal influenza vaccines is challenging in part due to the limitations of the traditional hemagglutination inhibition (HAI) assay with A/H3N2 [...] Read more.
Currently available seasonal influenza vaccines confer variable protection due to antigenic changes resulting from the accumulation of diverse mutations. The analysis of new seasonal influenza vaccines is challenging in part due to the limitations of the traditional hemagglutination inhibition (HAI) assay with A/H3N2 strains. An improved and objective novel HAI assay was developed with recombinant virus-like particles (VLPs) and an egg-derived virus as agglutinins, the oseltamivir treatment of VLPs, human red blood cells, and using an automated image reader-based analysis of hemagglutination. HAI validation was demonstrated using four VLPs and egg-derived strains, with 46–56 serum samples tested 12 times in duplicate per strain. The validated HAI assay was precise as indicated by the percent geometric coefficient of variation for intra-, inter-, and total assay precision, as well as accurate as evidenced by percent bias measurements. The assay exhibited linearity, specificity for homologous type/subtype strains, and sensitivity with a starting dilution of 1:10. Assay robustness and sample stability were demonstrated as a percentage difference compared to reference condition. Validated HAI results were equivalent for the single and duplicate sample testing and correlated well with a qualified live wild-type influenza microneutralization assay. These findings demonstrate the suitability of this high-throughput novel modified validated HAI assay for evaluating vaccine immunogenicity and efficacy. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

20 pages, 1890 KiB  
Review
Nanoparticles as Delivery Systems for Antigenic Saccharides: From Conjugation Chemistry to Vaccine Design
by Marie-Jeanne Archambault, Laetitia Mwadi Tshibwabwa, Mélanie Côté-Cyr, Serge Moffet, Tze Chieh Shiao and Steve Bourgault
Vaccines 2024, 12(11), 1290; https://doi.org/10.3390/vaccines12111290 - 19 Nov 2024
Viewed by 174
Abstract
Glycoconjugate vaccines have been effective in preventing numerous bacterial infectious diseases and have shown recent potential to treat cancers through active immunotherapy. Soluble polysaccharides elicit short-lasting immune responses and are usually covalently linked to immunogenic carrier proteins to enhance the antigen-specific immune response [...] Read more.
Glycoconjugate vaccines have been effective in preventing numerous bacterial infectious diseases and have shown recent potential to treat cancers through active immunotherapy. Soluble polysaccharides elicit short-lasting immune responses and are usually covalently linked to immunogenic carrier proteins to enhance the antigen-specific immune response by stimulating T-cell-dependent mechanisms. Nonetheless, the conjugation of purified polysaccharides to carrier proteins complexifies vaccine production, and immunization with protein glycoconjugates can lead to the undesirable immunogenic interference of the carrier. Recently, the use of nanoparticles and nanoassemblies for the delivery of antigenic saccharides has gathered attention from the scientific community. Nanoparticles can be easily functionalized with a diversity of functionalities, including T-cell epitope, immunomodulator and synthetic saccharides, allowing for the modulation and polarization of the glycoantigen-specific immune response. Notably, the conjugation of glycan to nanoparticles protects the antigens from degradation and enhances their uptake by immune cells. Different types of nanoparticles, such as liposomes assembled from lipids, inorganic nanoparticles, virus-like particles and dendrimers, have been explored for glycovaccine design. The versatility of nanoparticles and their ability to induce robust immune responses make them attractive delivery platforms for antigenic saccharides. The present review aims at summarizing recent advancements in the use of nano-scaled systems for the delivery of synthetic glycoantigens. After briefly presenting the immunological mechanisms required to promote a robust immune response against antigenic saccharides, this review will offer an overview of the current trends in the nanoparticle-based delivery of glycoantigens. Full article
(This article belongs to the Special Issue Advances in Glycoconjugate Vaccines and Nanovaccines)
Show Figures

Figure 1

15 pages, 4475 KiB  
Article
Effect of Graphene Aerosol Doped with Hypochlorous Acid, Curcumin, and Silver Nanoparticles on Selected Structural and Biological Properties
by Aleksandra Sowińska, Agata Lange, Marta Kutwin, Sławomir Jaworski, Wojciech Skrzeczanowski, Aneta Bombalska, Anna Romiszewska, Klaudia Olkowicz, Zdzisław Bogdanowicz and Barbara Nasiłowska
Materials 2024, 17(22), 5640; https://doi.org/10.3390/ma17225640 (registering DOI) - 18 Nov 2024
Viewed by 256
Abstract
This paper presents the results of studies on the effects of four types of aerosols containing an aqueous dispersed suspension of graphene oxide (GO) and an aqueous dispersed suspension of graphene oxide with the addition of curcumin (GO + C), silver nanoparticles (GO [...] Read more.
This paper presents the results of studies on the effects of four types of aerosols containing an aqueous dispersed suspension of graphene oxide (GO) and an aqueous dispersed suspension of graphene oxide with the addition of curcumin (GO + C), silver nanoparticles (GO + Ag), and hypochlorous acid (GO + HClO) on selected structural and biological properties. Structural studies were carried out using electron microscopy, including a scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), laser emission spectroscopy (LIBS), and absorption spectra in the infrared range attuned total reflectance (FTIR-ATR). The growth inhibition zone and viability of Staphylococcus aureus and Pseudomonas aeruginosa bacteria were studied. Studies have shown that the addition of silver nanoparticles and hypochlorous acid to the nanostructures of graphene oxide suspension improves bactericidal properties. In addition, it was observed that the application of a dispersed graphene oxide suspension in the form of an aerosol enriched with hypochlorous acid and silver nanoparticles results in the formation of a fairly uniform layer of graphene flakes, characterized by the presence of admixtures used. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

20 pages, 2059 KiB  
Review
Engineering Escherichia coli-Derived Nanoparticles for Vaccine Development
by Shubing Tang, Chen Zhao and Xianchao Zhu
Vaccines 2024, 12(11), 1287; https://doi.org/10.3390/vaccines12111287 - 18 Nov 2024
Viewed by 493
Abstract
The development of effective vaccines necessitates a delicate balance between maximizing immunogenicity and minimizing safety concerns. Subunit vaccines, while generally considered safe, often fail to elicit robust and durable immune responses. Nanotechnology presents a promising approach to address this dilemma, enabling subunit antigens [...] Read more.
The development of effective vaccines necessitates a delicate balance between maximizing immunogenicity and minimizing safety concerns. Subunit vaccines, while generally considered safe, often fail to elicit robust and durable immune responses. Nanotechnology presents a promising approach to address this dilemma, enabling subunit antigens to mimic critical aspects of native pathogens, such as nanoscale dimensions, geometry, and highly repetitive antigen display. Various expression systems, including Escherichia coli (E. coli), yeast, baculovirus/insect cells, and Chinese hamster ovary (CHO) cells, have been explored for the production of nanoparticle vaccines. Among these, E. coli stands out due to its cost-effectiveness, scalability, rapid production cycle, and high yields. However, the E. coli manufacturing platform faces challenges related to its unfavorable redox environment for disulfide bond formation, lack of post-translational modifications, and difficulties in achieving proper protein folding. This review focuses on molecular and protein engineering strategies to enhance protein solubility in E. coli and facilitate the in vitro reassembly of virus-like particles (VLPs). We also discuss approaches for antigen display on nanocarrier surfaces and methods to stabilize these carriers. These bioengineering approaches, in combination with advanced nanocarrier design, hold significant potential for developing highly effective and affordable E. coli-derived nanovaccines, paving the way for improved protection against a wide range of infectious diseases. Full article
Show Figures

Figure 1

19 pages, 4087 KiB  
Article
Silk Foams with Metallic Nanoparticles as Scaffolds for Soft Tissue Regeneration
by Claire de Lartigue, Cristina Belda Marín, Vincent Fitzpatrick, Antonella Esposito, Sandra Casale, Jessem Landoulsi, Erwan Guénin and Christophe Egles
Int. J. Mol. Sci. 2024, 25(22), 12377; https://doi.org/10.3390/ijms252212377 - 18 Nov 2024
Viewed by 399
Abstract
Tissue regeneration can be achieved by providing endogenous cells with a biomaterial scaffold that supports their adhesion and proliferation, as well as the synthesis and deposition of an extracellular matrix (ECM). In this work, silk fibroin protein foams were formed by lyophilization to [...] Read more.
Tissue regeneration can be achieved by providing endogenous cells with a biomaterial scaffold that supports their adhesion and proliferation, as well as the synthesis and deposition of an extracellular matrix (ECM). In this work, silk fibroin protein foams were formed by lyophilization to generate tissue engineering scaffolds. Three types of medically relevant nanoparticles (NPs) (iron oxide, gold and silver) were added to this biomaterial to assess the ability of silk foams to be functionalized with these NPs. The structural and mechanical properties of the foams with and without the NPs were suitable for tissue support. The in vitro cytocompatibility of the scaffolds was confirmed according to the ISO 10993 guidelines. The biocompatibility of the scaffolds was investigated by assessing inflammation and endogenous cell colonization in a mouse subcutaneous model These in vivo experiments demonstrated a loss of acute inflammation and the absence of chronic inflammation in the grafted animals. The obtained results show that silk foams are good candidates for supporting soft tissue regeneration with the additional possibility of functionalization with NPs. Full article
Show Figures

Figure 1

26 pages, 8062 KiB  
Article
Biosynthesis; Characterization; and Antibacterial, Antioxidant, and Docking Potentials of Doped Silver Nanoparticles Synthesized from Pine Needle Leaf Extract
by Nourhane A. Darwich, Malak Mezher, Alaa M. Abdallah, Ahmed F. El-Sayed, Rana El Hajj, Taymour A. Hamdalla and Mahmoud I. Khalil
Processes 2024, 12(11), 2590; https://doi.org/10.3390/pr12112590 - 18 Nov 2024
Viewed by 267
Abstract
The current study focused on the synthesis of doped silver nanoparticles (doped AgNPs) with yttrium (Y), gadolinium (Gd), and chromium (Cr) from pine needle leaf extract (PNLE). X-ray diffraction (XRD) was performed to assess the phase formation, detecting 61.83% from Ag and 38.17% [...] Read more.
The current study focused on the synthesis of doped silver nanoparticles (doped AgNPs) with yttrium (Y), gadolinium (Gd), and chromium (Cr) from pine needle leaf extract (PNLE). X-ray diffraction (XRD) was performed to assess the phase formation, detecting 61.83% from Ag and 38.17% for secondary phases of AgCl, AgO, Y, Cr-, and Gd phases. The size and shape of the NPs were determined by transmission electron microscopy (TEM), showing a spherical shape with an average particle size of 26.43 nm. X-ray photoelectron spectroscopy (XPS) detected the oxidation state of the presented elements. The scanning electron microscope (SEM) and the energy-dispersive X-ray analysis (EDX) determined the morphology and elemental composition of the NPs, respectively. Fourier transform infrared spectroscopy (FTIR) determined the different functional groups indicating the presence of Ag, Y, Gd, Cr, and other groups. Photoluminescence (PL) spectroscopy showed the optical properties of the NPs. A vibrating sample magnetometer (VSM) revealed the ferromagnetic behavior of the doped AgNPs. The antibacterial activity of the doped AgNPs was tested against six uro-pathogenic bacteria (Staphylococcus aureus, Staphylococcus haemolyticus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa) using the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) microdilution assays, agar well diffusion assay, time–kill test, and antibiofilm screening assays, revealing significant activity, with MICs ranging between 0.0625 and 0.5 mg/mL and antibiofilm activity between 40 and 85%. The antioxidant activity was determined by the 1,1, diphenyl 1-2 picrylhydrazyl (DPPH) radical scavenging assay with a potential of 61.3%. The docking studies showed that the doped AgNPs had the potential to predict the inhibition of crucial enzymes such as penicillin-binding proteins, LasR-binding proteins, carbapenemase, DNA gyrase, and dihydropteroate synthase. The results suggest that the doped AgNPs can be applied in different medical domains. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
Show Figures

Figure 1

14 pages, 3079 KiB  
Article
Mechanical Motion and Color Change of Humidity-Responsive Cellulose Nanocrystal Films from Sunflower Pith
by Shujie Wang, Yanan Liu, Zhengkun Tao, Yang Li, Jie Jiang and Ke Zheng
Polymers 2024, 16(22), 3199; https://doi.org/10.3390/polym16223199 - 18 Nov 2024
Viewed by 318
Abstract
Nanocellulose has prompted extensive exploration of its applications in advanced functional materials, especially humidity-responsive materials. However, the sunflower pith (SP), a unique agricultural by-product with high cellulose and pectin content, is always ignored and wasted. This work applied sulfuric acid hydrolysis and sonication [...] Read more.
Nanocellulose has prompted extensive exploration of its applications in advanced functional materials, especially humidity-responsive materials. However, the sunflower pith (SP), a unique agricultural by-product with high cellulose and pectin content, is always ignored and wasted. This work applied sulfuric acid hydrolysis and sonication to sunflower pith to obtain nanocellulose and construct film materials with humidity-responsive properties. The SP nanoparticle (SP-NP) suspension could form a transparent film with stacked layers of laminated structure. Due to the tightly layered structure and expansion confinement effect, when humidity increases, the SP-NP film responds rapidly in just 0.5 s and completes a full flipping cycle in 4 s, demonstrating its excellent humidity-responsive capability. After removing hemicellulose and lignin, the SP cellulose nanocrystals (SPC-NC) could self-assemble into a chiral nematic structure in the film, displaying various structural colors based on different sonication times. The color of the SPC-NC film dynamically adjusted with changes in ambient humidity, exhibiting both functionality and aesthetics. This research provides a new perspective on the high-value utilization of sunflower pith while establishing a practical foundation for developing novel responsive cellulose-based materials. Full article
(This article belongs to the Special Issue Valorization of Polymers in Wood)
Show Figures

Figure 1

24 pages, 7530 KiB  
Article
Immobilization of Silver Nanoparticles with Defensive Gum of Moringa oleifera for Antibacterial Efficacy Against Resistant Bacterial Species from Human Infections
by Liaqat Ali, Nisar Ahmad, Muhammad Nazir Uddin, Mostafa A. Abdel-Maksoud, Hina Fazal, Sabiha Fatima, Mohamed A. El-Tayeb, Bushra Hafeez Kiani, Wajid Khan, Murad Ali Rahat, Mohammad Ali, Yaqub Khan, Kamran Rauf, Salman Khan, Sami Ullah, Tanveer Ahmad, Afshan Salam and Sajjad Ahmad
Pharmaceuticals 2024, 17(11), 1546; https://doi.org/10.3390/ph17111546 - 18 Nov 2024
Viewed by 290
Abstract
Background: The worldwide misuse of antibiotics is one of the main factors in microbial resistance that is a serious threat worldwide. Alternative strategies are needed to overcome this issue. Objectives: In this study, a novel strategy was adopted to suppress the [...] Read more.
Background: The worldwide misuse of antibiotics is one of the main factors in microbial resistance that is a serious threat worldwide. Alternative strategies are needed to overcome this issue. Objectives: In this study, a novel strategy was adopted to suppress the growth of resistant pathogens through immobilization of silver nanoparticles (AgNPs) in gum of Moringa oleifera. Methods: The AgNPs were prepared from the leaves of Moringa oleifera and subsequently characterized through UV-spectrophotometry, FTIR, SEM, and XRD. The differential ratios of characterized AgNPs were immobilized with gum of M. oleifera and investigated for antimicrobial potential against highly resistant pathogens. Results: The immobilized AgNPs displayed promising activities against highly resistant B. subtilis (23.6 mm; 50 µL:200 µL), E. coli (19.3 mm; 75 µL:200 µL), K. pneumoniae (22 mm; 200 µL:200 µL), P. mirabilis (16.3 mm; 100 µL:200 µL), P. aeruginosa (22 mm; 175 µL:200 µL), and S. typhi (19.3; 25 µL:200 µL) than either AgNPs alone or gum. The immobilized AgNPs released positive sliver ions that easily attached to negatively charged bacterial cells. After attachment and permeation to bacterial cells, the immobilized NPs alter the cell membrane permeability, protein/enzymes denaturation, oxidative stress (ROS), damage DNA, and change the gene expression level. It has been mechanistically considered that the immobilized AgNPs can kill bacteria by damaging their cell membranes, dephosphorylating tyrosine residues during their signal transduction pathways, inducing cell apoptosis, rupturing organelles, and inhibiting cell division, which finally leads to cell death. Conclusions: This study proposes a potential alternative drug for curing various infections. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs))
Show Figures

Figure 1

29 pages, 7806 KiB  
Article
Formulation and Ex Vivo Evaluation of Ivermectin Within Different Nano-Drug Delivery Vehicles for Transdermal Drug Delivery
by Eunice Maureen Steenekamp, Wilna Liebenberg, Hendrik J. R. Lemmer and Minja Gerber
Pharmaceutics 2024, 16(11), 1466; https://doi.org/10.3390/pharmaceutics16111466 - 18 Nov 2024
Viewed by 478
Abstract
Background/Objectives: Ivermectin gained widespread attention as the “miracle drug” during the coronavirus disease 2019 (COVID-19) pandemic. Its inclusion in the 21st World Health Organization (WHO) List of Essential Medicines is attributed to its targeted anti-helminthic response, high efficacy, cost-effectiveness and favorable safety profile. [...] Read more.
Background/Objectives: Ivermectin gained widespread attention as the “miracle drug” during the coronavirus disease 2019 (COVID-19) pandemic. Its inclusion in the 21st World Health Organization (WHO) List of Essential Medicines is attributed to its targeted anti-helminthic response, high efficacy, cost-effectiveness and favorable safety profile. Since the late 2000s, this bio-inspired active pharmaceutical ingredient (API) gained renewed interest for its diverse therapeutic capabilities. However, producing ivermectin formulations does remain challenging due to its poor water solubility, resulting in low bioavailability after oral administration. Therefore, the transdermal drug delivery of ivermectin was considered to overcome these challenges, which are observed after oral administration. Methods: Ivermectin was incorporated in a nano-emulsion, nano-emulgel and a colloidal suspension as ivermectin-loaded nanoparticles. The nano-drug delivery vehicles were optimized, characterized and evaluated through in vitro membrane release studies, ex vivo skin diffusion studies and tape-stripping to determine whether ivermectin was successfully released from its vehicle and delivered transdermally and/or topically throughout the skin. This study concluded with cytotoxicity tests using the methyl thiazolyl tetrazolium (MTT) and neutral red (NR) assays on both human immortalized epidermal keratinocytes (HaCaT) and human immortalized dermal fibroblasts (BJ-5ta). Results: Ivermectin was successfully released from each vehicle, delivered transdermally and topically throughout the skin and demonstrated little to no cytotoxicity at concentrations that diffused through the skin. Conclusions: The type of nano-drug delivery vehicle used to incorporate ivermectin influences its delivery both topically and transdermally, highlighting the dynamic equilibrium between the vehicle, the API and the skin. Full article
(This article belongs to the Special Issue Transdermal Delivery: Challenges and Opportunities)
Show Figures

Figure 1

15 pages, 3122 KiB  
Article
Fe3O4@SiO2-NH2 Functionalized Nanoparticles as a Potential Contrast Agent in Magnetic Resonance
by Brayan Stick Betin Bohorquez, Indry Milena Saavedra Gaona, Carlos Arturo Parra Vargas, Karina Vargas-Sánchez, Jahaziel Amaya, Mónica Losada-Barragán, Javier Rincón and Daniel Llamosa Pérez
Condens. Matter 2024, 9(4), 49; https://doi.org/10.3390/condmat9040049 - 17 Nov 2024
Viewed by 485
Abstract
The present work proposes a method for the synthesis of a nanoparticle with a superparamagnetic Fe3O4 core coated with SiO2-NH2 by ultrasound-assisted coprecipitation. Additionally, the nanoparticle is functionalized with a microinflammation biomarker peptide, and its effects on [...] Read more.
The present work proposes a method for the synthesis of a nanoparticle with a superparamagnetic Fe3O4 core coated with SiO2-NH2 by ultrasound-assisted coprecipitation. Additionally, the nanoparticle is functionalized with a microinflammation biomarker peptide, and its effects on the viability of monkey kidney endothelial cells and the Vero cell line were evaluated. The main physicochemical properties of the nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), a vibrating sample magnetometer (VSM), a field emission scanning electron, Scanning Electron Microscopy (SEM), and High-Resolution Transmission Electron Microscopy (HR-TEM). The results showed that the nanoparticles are spherical, with sizes smaller than 10 nm, with high thermal stability and superparamagnetic properties. They also demonstrated cell viability rates exceeding 85% through Magnetic Resonance Imaging (MRI). The results indicate the potential of these nanoparticles to be used as a contrast agent in magnetic resonance to detect mild brain lesions. Full article
Show Figures

Figure 1

Back to TopTop