For a decade, being at the centre of interest in different research disciplines, graphene has already made its profound place in some of these disciplines, particularly in electronics. Graphene is the first truly two-dimensional material being realised theoretically as well as experimentally. Having very high mobility at room temperature and being just single atom thick, along with ambipolar nature and strong field effect, it has gained much attention for electronics applications. But still, absence of a band gap has restricted its use in logic devices. Nevertheless, high frequency devices using graphene as channel material, have already been demonstrated with competitive results to current best MOSFET devices. Keeping in mind the current scaling problem faced by Si CMOS technology, and to push further the performance of graphene transistors, in this thesis different high-ĸ materials were examined, as a candidate gate dielectric. Particular attention was given to those oxides which are not possible to use in Si CMOS, due to band mismatch. Ultimately much work was done for strontium titanate (STO) based devices during this thesis work. This thesis work focuses on realisation and characterisation of graphene transistors using ultrahigh-ĸ gate oxide. Different samples were realised using epitaxially grown STO as gate oxide and CVD grown graphene as channel material. Various graphene-based field effect transistors (GFETs) were fabricated: starting from simple back gated GFETs and then using them as building block for graphene inverters. It was found that electrical performance of the GFETs do vary significantly from sample to sample based on graphene microstructure. As well as due to dielectric charging, persistent hysteresis was observed in all the devices. It was also noticed that the electron mobility was lower than hole mobility in all the fabricated GFETs, which can only be happened due to effect from dielectric, as graphene has symmetric band structure. In any case, results obtained can serve as a starting point for realisation of GFETs with ultrahigh-ĸ materials, to reach higher performance in graphene devices which currently lagging behind the dominant Si CMOS technology.
Da più di una decade il grafene è al centro degli studi di diverse discipline e tra queste un’attenzione particolare è stata rivolta al campo dell’elettronica. Il grafene è stato il primo materiale bidimensionale ad essere stato isolato e studiato sia dal punto di vista teorico che sperimentale. Grazie alla sua altissima mobilità a temperatura ambiente, al suo spessore monoatomico oltre che alla sua natura ambipolare, ha catturato l’attenzione per diverse applicazioni elettroniche. D’altra parte, però, l’assenza di un band – gap rende il suo uso nei dispositivi logici difficoltoso. Comunque, dispositivi utilizzanti grafene come materiale attivo e funzionanti ad alta frequenza, sono stati dimostrati con risultati comparabili a quelli dei tradizionali MOSFET. Tenendo a mente le problematiche di scaling che si riscontrano oggi nella tecnologia CMOS basata su silicio e cercando di spingere oltre le performance dei transistor in grafene, differenti materiali con alta costante dielettrica sono stati analizzati in questa tesi come possibili candidati per l’ossido di gate. Un’attenzione particolare è stata data a quegli ossidi che non possono essere utilizzati con il silicio a causa del mismatch tra le bande. Molto del lavoro qui descritto è stato svolto con titanato di stronzio (STO). Questo lavoro di tesi si focalizza sulla fabbricazione e caratterizzazione di transistor in grafene utilizzando ossidi di gate ad alta costante dielettrica. Sono stati realizzati campioni differenti con STO cresciuto epitassialmente e grafene cresciuto tramite deposizione chimica da fase vapore (CVD). Differenti tipologie di transistor in grafene (GFETs) e piccoli circuiti integrati sono stati fabbricati. Si è dimostrato che le performance elettriche dei GFETs variano significativamente da campione a campione a seconda della microstruttura del grafene utilizzato. Allo stesso modo, un’isteresi persistente nelle misure elettriche è da imputare al caricamento del materiale dielettrico. Inoltre in tutti i campioni fabbricati la mobilità degli elettroni è minore di quella delle lacune, fattore imputabile alla tipologia di dielettrico utilizzato dato che il grafene ha una dipendenza lineare delle bande energetiche. In ogni caso i risultati ottenuti sono un punto di partenza per la realizzazione id GFETs con materiali ad altissima costante dielettrica per il raggiungimento di performance che possano competere con l’attualmente dominante tecnologia CMOS in silicio.
Graphene transistors with ultrahigh-ĸ gate oxide
PATEL, KISHAN ASHOKBHAI
2015/2016
Abstract
For a decade, being at the centre of interest in different research disciplines, graphene has already made its profound place in some of these disciplines, particularly in electronics. Graphene is the first truly two-dimensional material being realised theoretically as well as experimentally. Having very high mobility at room temperature and being just single atom thick, along with ambipolar nature and strong field effect, it has gained much attention for electronics applications. But still, absence of a band gap has restricted its use in logic devices. Nevertheless, high frequency devices using graphene as channel material, have already been demonstrated with competitive results to current best MOSFET devices. Keeping in mind the current scaling problem faced by Si CMOS technology, and to push further the performance of graphene transistors, in this thesis different high-ĸ materials were examined, as a candidate gate dielectric. Particular attention was given to those oxides which are not possible to use in Si CMOS, due to band mismatch. Ultimately much work was done for strontium titanate (STO) based devices during this thesis work. This thesis work focuses on realisation and characterisation of graphene transistors using ultrahigh-ĸ gate oxide. Different samples were realised using epitaxially grown STO as gate oxide and CVD grown graphene as channel material. Various graphene-based field effect transistors (GFETs) were fabricated: starting from simple back gated GFETs and then using them as building block for graphene inverters. It was found that electrical performance of the GFETs do vary significantly from sample to sample based on graphene microstructure. As well as due to dielectric charging, persistent hysteresis was observed in all the devices. It was also noticed that the electron mobility was lower than hole mobility in all the fabricated GFETs, which can only be happened due to effect from dielectric, as graphene has symmetric band structure. In any case, results obtained can serve as a starting point for realisation of GFETs with ultrahigh-ĸ materials, to reach higher performance in graphene devices which currently lagging behind the dominant Si CMOS technology.File | Dimensione | Formato | |
---|---|---|---|
2016_09_Patel.pdf
Open Access dal 17/09/2017
Descrizione: Thesis text
Dimensione
4.49 MB
Formato
Adobe PDF
|
4.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/124402