Preprint
Article

Plasma Polymerization SnOxCy Organic-like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion Thermal Resistive Properties

Altmetrics

Downloads

1548

Views

1203

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 September 2016

Posted:

28 September 2016

You are already at the latest version

Alerts
Abstract
In this study, a new type of temperature sensor device was developed. The circular electrode of the thermal sensitive sensor was modified with TMT and O2 plasma to enhance the conductivity by forming a thin SnOxCy layer on the electrode surface. The Nano-Au particles were subjected to O2 plasma pretreatment to form peroxide groups on the surface. The thermally sensitive sensor was made by mixing the above-treated Nano-Au particles with N-isopropylacrylamide (NIPAAm) to form solution and then UV-induced grafting polymerization of the NIPAAm-containing solution onto the electrode substrate. The composite hydrogels on the electrode introduce thermo-sensitive polymeric surface films for temperature sensing. Using ambient environment resistance test to measure the resistance, the LCST (lower critical solution temperature) of Nano-Au (MUA) mixed with NIPAAm hydrogel was found to be 32 °C. At ambient temperatures higher than LCST, the electrode resistance decreases linearly.
Keywords: 
Subject: Chemistry and Materials Science  -   Surfaces, Coatings and Films
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated