Preprint
Article

Co-simulation Framework for on-Chip LIDAR Sensors in a Cyber-physical System

Altmetrics

Downloads

1323

Views

789

Comments

2

A peer-reviewed article of this preprint also exists.

Submitted:

03 August 2017

Posted:

04 August 2017

You are already at the latest version

Alerts
Abstract
Collision avoidance is an important feature in advanced driver-assistance systems, aiming at providing correct, timely and reliable warnings before an imminent collision (objects, vehicles, pedestrians, etc.). A co-simulation framework is proposed in this paper to address the design and evaluation of collision avoidances in a cyber-physical system. The co-simulation framework is supported on the interaction between SCANeR and Matlab/Simulink. From the best of authors’ knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip LIDAR sensors in a cyber-physical system (CPS) considering traffic scenarios is presented. The CPS is designed and implemented in SCANeR. Secondly, an obstacle recognition library with three specific Artificial Intelligence-based methods is also designed based on sensory information database provided by SCANeR. Three methods for collision avoidance detection are considered, i.e.; a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods for detecting obstacles before different weather conditions is done with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and fog conditions, the support vector machine in rainy and self-organized map in snowy conditions.
Keywords: 
Subject: Physical Sciences  -   Mathematical Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated