Preprint
Article

Microparticle Inertial Focusing in an Asymmetric Curved Microchannel

Altmetrics

Downloads

498

Views

324

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 June 2018

Posted:

02 July 2018

You are already at the latest version

Alerts
Abstract
Inertial microfluidics offers high throughput, label-free, easy to design, and cost-effective solutions and is a promising technique based on hydrodynamic forces (passive techniques) instead of external ones, which can be employed in lab-on-a-chip and micro-total-analysis-systems for focusing, manipulation, and separation of microparticles in chemical and biomedical applications. The current work, studies the focusing behavior of microparticles in an asymmetric curvilinear microchannel. For this purpose, focusing behavior, including position and band width, of microparticles of diameters of 10, 15 and 20 µm, which served as representatives of different cells, in an asymmetric curvilinear microchannel with curvature angle of 280° was experimentally studied at flow rates from 400 to 2700 µL/min (corresponding to Reynolds numbers between 30 and 205). The results revealed that the largest distance between focusing bands of 20 µm and 10 µm microparticles as well as between focusing bands of 15 µm and 10 µm was obtained at Reynolds number of 121. For the case of microparticles of diameters 20 µm and 15 µm, the largest distance was seen at Reynolds number of 144. The focusing band width became smaller in the asymmetric microchannel so that focusing could be more clearly observed in this configuration.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated