Preprint
Article

Synthesis of Thermo-Responsive Block-Graft Copolymer Based on PCL and PEG Analogues, and Preparation of Hydrogel via Click Chemistry

Altmetrics

Downloads

384

Views

383

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

13 March 2019

Posted:

14 March 2019

You are already at the latest version

Alerts
Abstract
The cross-linkable PCL-PEG analogues block-graft copolymer was designed and synthesized, which with the copolymer of the MEO2MA and OEGMA as graft chains to improve the mPEG-b-PCL-b-mPEG copolymer the aqueous solution properties. And successfully prepared two hydrogels via a copper-catalyzed 1, 3-dipolar azide-alkyne cycloaddition reaction of alkyne-terminated poly[glycidyl methacrylate-co-2-(2-methoxyethoxy) ethyl methacrylate-co-oligo (ethylene glycol) methacrylate] [P(GMA-co-MEO2MA-co-OEGMA)] with azide end-functionalized PCL-PEG analogues block-graft copolymer, and tetrakis (2-propynyloxymethyl) -methane (TPOM) and with azide end-functionalized PCL-PEG analogues block-graft copolymer. The copolymer's chemical structure was characterized by proton nuclear magnetic resonance spectroscopy and fourier transform infrared spectroscopy. The molecular weights of the copolymers were decided with gel permeation chromatography. The water solubility and temperature sensitivity of the copolymers were studied by taking digital photos and transmittance change measured by UV spectrophotometer at different temperatures. Fluorescence probes, surface tension, dynamic light scattering and transmission electron microscopy were used to analyze the micelles that copolymers self-assembly in aqueous solution. The sol-gel behavior of copolymer solutions at high concentrations was explored by vial inversion experiments. Finally, the network structure of the gels was observed by scanning electron microscopy. These conclusions indicate that these hydrogels are expected to be used as a new material in the field of biomedicine.
Keywords: 
Subject: Chemistry and Materials Science  -   Polymers and Plastics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated