Preprint
Review

Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorus as Anode Material: Review

Altmetrics

Downloads

1038

Views

342

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

29 September 2019

Posted:

30 September 2019

You are already at the latest version

Alerts
Abstract
Electric vehicles (EVs) are being endorsed as the uppermost successor to fuel-powered cars, with timetables for banning the sale of petrol-fueled vehicles announced in many countries. However, the range and charging times of EVs are still considerable concerns. Fast charging could be a solution to consumers' range anxiety and the acceptance of EVs. Nevertheless, it is a complicated and systematized challenge to realize the fast charging of EVs because it includes the coordinated development of battery cells, including electrode materials, EV battery power systems, charging piles, electric grids, etc. This paper aims to serve as an analysis for the development of fast-charging technology, with a discussion of the current situation, constraints and development direction of EV fast-charging technologies from the macroscale and microscale perspectives of fast-charging challenges. It is emphasized that to essentially solve the problem of fast charging, the development of new battery materials, especially anode materials with improved lithium ion diffusion coefficients, is the key. It is highlighted that red phosphorus is the most promising anode that can simultaneously satisfy the double standards of high-energy density and fast-charging performance to a maximum degree.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated